
Neuromethods (2020) 151: 129–156
DOI 10.1007/7657_2019_26
© Springer Science+Business Media, LLC 2019
Published online: 12 September 2019

Multivariate Methods to Track the Spatiotemporal Profile
of Feature-Based Attentional Selection Using EEG

Johannes Jacobus Fahrenfort

Abstract

This chapter provides a tutorial style guide to analyzing electroencephalogram (EEG) data contingent on
feature-based attentional selection. It is targeted at researchers that currently investigate attentional
processes using univariate methods but consider moving to multivariate analyses. The chapter starts by
providing examples of classical univariate analysis, in which the EEG signal occurring ipsilateral to the target
is subtracted from the signal that occurs in a contralateral electrode (i.e., the classical N2pc, an interhemi-
spheric posterior negativity emerging around 180–200 ms). Next, it shows how the same type of informa-
tion can also be identified using multivariate pattern analysis (MVPA). MVPA does not restrict one to
contrast attentional selection in opposite hemifields but also allows one to assess attentional selection on the
vertical meridian, or even within a quadrant of the visual field, opening up new avenues for research. The
chapter demonstrates how to visualize topographic maps of attentional selection when using MVPA and
shows how to assess timing onsets using the percent-amplitude latency method. Finally, it shows how a
forward encoding model enables one to characterize the relationship between a continuous experimental
variable (such as attended targets positioned on a circle) and EEG activity. This allows one to construct
brain patterns for positions in the visual field that were never attended in the data that was used to create the
forward model. This chapter is intended as a practical guide, explaining the methods and providing the
scripts that can be used to generate the figures in-line, thus providing a step-by-step cookbook for analyzing
neural time series data in the field of feature-based attentional selection.

Keywords Feature-based attention, Attentional selection, EEG, Univariate analysis, N2pc, MVPA,
Multivariate pattern analysis, Classification, Decoding, BDM, Forward encoding model, Inverted
encoding model, FEM

1 Introduction

Human observers are very good at extracting information from the
visual field based on some relevant feature dimension, such as color.
For example, when asked to determine whether the red element in
a search display is a digit or a letter, they can do so very quickly and
with very high accuracy (see Fig. 1). This ability is often referred to
as feature-based attentional selection. There is a long history of inves-
tigating feature-based attentional selection (from here on referred to
as attentional selection) using EEG [1, 2]. Traditionally, attentional
selection is investigated in EEG using univariate analyses, in which
targets are presented in one of two hemifields [3]. Observers detect

129

http://crossmark.crossref.org/dialog/?doi=10.1007/7657_2019_26&domain=pdf

a feature-defined target either on the left or on the right of fixation,
and an electrophysiological marker of this selection process is identi-
fied by subtracting the event-related potentials (ERPs) on the ipsilat-
eral side of the target from the ERPs occurring on the contralateral
side of the target, typically using electrodes PO7 and PO8. This
process results in an EEG component that is referred to as the N2pc.

Fig. 1 Task structure in Experiment 1 and Experiment 2. Top: Example trial time lines of Experiment 1. There
were two types of trials: the first display contained items on the horizontal meridian and the second display
items on the vertical meridian, or the first display contained items on the vertical meridian and the second
display items on the horizontal meridian. Subjects were required to determine whether a color-defined target
was a digit or letter. The target color remained constant within a session (red in this example). Potential target
colors were red, green, blue, or yellow (counterbalanced across subjects). Within blocks, subjects either had to
detect a target in the first display (D1 blocks) or they had to detect a target in the second display (D2 blocks). We
only analyzed task relevant displays. Bottom: Task and conditions in Experiment 2. Bottom left panel: Trial time
line of Experiment 2. Subjects were asked to determine the identity of a colored target (letter or digit); target color
could be red, green, or blue (counterbalanced across subjects). Bottom right panel: Positions used in Experiment
2, counted clockwise, one position contained the target, the other positions were occupied by distractors

130 Johannes Jacobus Fahrenfort

Recently, we have shown how such a signal can also be
extracted using multivariate pattern analysis (MVPA) [4]. This
chapter compares the traditional method of obtaining electrophys-
iological markers of attentional selection to those that are obtained
through MVPA. First, it explains how to compute the N2pc and
provides examples of the N2pc. Next, it compares these to a classi-
fication approach in which a neural signature of attentional selec-
tion is generated by exploiting the multivariate nature of the EEG
signal. Although some aspects of multivariate classification are
explained, the focus of the chapter is on illustrating how to execute
this analysis oneself. For details regarding multivariate classification,
I refer the reader to more specialist texts [5, 6]. The chapter also
shows how to properly extract and compare temporal onsets, as well
as how to plot topographic maps based on forward-transformed
classifier weights.

Finally, the chapter explains how a signature of attentional
selection can also be captured using a forward encoding model
and how this model can be used to construct cortical activity for
conditions that did not occur in the experiment. Potential caveats
of the forward encoding approach are briefly discussed. More
detailed information is provided with respect to the forward encod-
ing approach than is done for classification, although here too the
focus is on practical application. Together, this provides a practical
manual for how univariate and multivariate analyses can be carried
out in the field of attentional selection, supplying both scripts and
some theoretical background along with the analyses. Because of
the focus on applicability, it does not follow a standard introduc-
tion-methods-results-discussion structure but rather a structure
that allows the reader to understand the procedures by reading
the explanations along with the results and the scripts that produce
these results. Hopefully, this helps the reader to more easily repro-
duce and apply these analyses to their own data.

The analyses that are presented in this chapter were performed
in MATLAB (MathWorks Inc., USA) using the freely available
Amsterdam Decoding and Modelling (ADAM) toolbox v1.08-
beta [5]. The reader can reproduce the analyses in this chapter in
MATLAB by installing the ADAM toolbox and its dependencies
from https://github.com/fahrenfort/ADAM/tree/1.08-beta
(follow the instructions under “install”) and downloading the
data and/or results from https://osf.io/r67sc/. To reproduce the
results, the reader can either choose to download the preprocessed
data from that location (EEGLAB_DATA.zip) and compute the
single subject first-level results from scratch or download the first-
level results (MVPA_RESULTS.zip) and compute only the group
results. Preprocessing of EEG data is not treated or explained in this
chapter, as it is not sufficiently relevant to understand the methods
that are presented here. As a general remark, I recommend to keep
preprocessing to a minimum. The only preprocessing that was

Multivariate Analysis of Attentional Selection 131

https://github.com/fahrenfort/ADAM/tree/1.07-beta
https://osf.io/r67sc/

applied to these data was (1) epoching the continuous data into
trials, (2) performing independent component analysis to remove
components reflecting eyeblinks, and (3) removing trials that con-
tain horizontal or vertical eye movements based on the electroocu-
logram (EOG). No offline high-pass filtering or low-pass filtering
was applied to the data, as this can produce unwanted shifts in
temporal onsets and produce spurious results; e.g., see [7, 8]. If
desired, the preprocessing script that was applied to the data
(as well as all the other scripts) can be downloaded from the
Open Science Framework (OSF) at the previously noted location
(SCRIPTS.zip).

Most of the analyses that are presented in this chapter have also
been published in a Scientific Reports article that is freely available in
the public domain; see [4]. Experimental details that are not
reported in this chapter are deemed irrelevant to understanding
the methods presented here but can be found in that publication if
needed. Further note that small differences between the results
from that publication and the results as presented in this chapter
are due to the fact that the data in this chapter were analyzed
without applying a high-pass filter.

2 Characterizing Attentional Selection Using the N2pc and Multivariate
Classification (MVPA)

In two separate experiments, subjects performed the tasks in Fig. 1
(top, Experiment 1,N¼ 12; bottom, Experiment 2,N¼ 15) while
EEG was collected. In both experiments, subjects were instructed
to fixate a dot in the middle of the screen while reporting the
category of a target color (digit or letter) by pressing a response
key. In both experiments, the target color was the same throughout
the experiment for any given subject, while target colors were
counterbalanced across subjects.

In Experiment 1, each trial contained two successively pre-
sented stimulus displays. Each display contained two items on
opposite sides, one in the target color (e.g., red in Fig. 1) and
another one in a nontarget color. In different blocks of the experi-
ment, subjects either had to report the target in the first display or
report the target in the second display. One of the two displays on
each trial contained a target-nontarget color pair on the horizontal
midline (to the left and right of fixation), and the other display
contained a target-nontarget color pair on the vertical midline
(above and below of fixation). Only task-relevant displays were
analyzed. Presentation sequence (vertical stimulus pair preceded
by horizontal pair or vice versa) was randomized across trials. The
goal of the experiment was to identify a neural signature of atten-
tionally selecting the relevant item. In Experiment 2, each trial
contained a single search display comprising eight items in a circular

132 Johannes Jacobus Fahrenfort

array. The target could appear in any of the eight locations (Fig. 1,
bottom). Other than that, the task was identical. In what follows, the
chapter describes how to characterize the unfolding of attentional
selection using EEG signals acquired during these experiments. The
data are analyzed using the ADAM toolbox [5]. At every step, an
ADAM script is provided to perform a given analysis, along with a
brief explanation of the parameters that are defined for that analysis.
Next, the figures are presented that are produced by the analysis.

Typically, EEG data are analyzed by first computing the results
at a single subject level. This is also called the first-level analysis.
After obtaining first-level results, a statistical analysis is performed
at the group level. The ADAM toolbox obtains the first-level results
by reading single subject EEG data from disk, performing the
relevant univariate and multivariate analyses on these single subject
data, and subsequently saving the resulting first-level single subject
results to the hard drive. Group-level results are then computed and
visualized by reading in the single subject results from disk and
subsequently performing and plotting group-level statistics. Below
is the script to run the first-level analyses of the first experiment,
which can be executed provided that the reader has installed a
working copy of MATLAB, the ADAM toolbox and its dependen-
cies, and has downloaded the preprocessed EEGLAB files from
OSF. The only thing that requires setting are the proper input
directory and output directories. Programming experience is not
required to execute these analyses, but the reader should know how
to open and execute .m script files in MATLAB and/or running
snippets of code from the MATLAB Command Window.

%% some general settings regarding experiment 1
filenames = { 'TopDown_1__merged' 'TopDown_2__merged' 'TopDown_3__merged' ...

'TopDown_4__merged' 'TopDown_5__merged' 'TopDown_7__merged' ...
'TopDown_8__merged' 'TopDown_9__merged' 'TopDown_10__merged' ...
'TopDown_12__merged' 'TopDown_14__merged' 'TopDown_16__merged'};

cond_left = [1 3 11 13]; % these condition codes specify target position
cond_right = [2 4 12 14];
cond_top = [5 7 15 17];
cond_bottom = [6 8 16 18];

% first level analysis
cfg = [];
cfg.datadir = 'C:\EXP1\EEGDATA';
cfg.filenames = filenames; % specifies the filenames
cfg.erp_baseline = [-.2,-.1]; % baseline period
cfg.resample = 250; % lower sampling rate to save time
cfg.nfolds = 10; % number of folds used in the k-fold
cfg.model = 'BDM'; % 'FEM' for forward encoding model
cfg.channels = 'ALL'; % channel pooling

% classify left versus right
cfg.class_spec{1} = cond_string(cond_left);
cfg.class_spec{2} = cond_string(cond_right);
cfg.outputdir = 'C:\EXP1\RESULTS\LEFTRIGHT';
adam_MVPA_firstlevel(cfg);

% classify top versus bottom
cfg.class_spec{1} = cond_string(cond_top);
cfg.class_spec{2} = cond_string(cond_bottom);
cfg.outputdir = 'C:\EXP1\RESULTS\TOPBOTTOM';
adam_MVPA_firstlevel(cfg);

Multivariate Analysis of Attentional Selection 133

This script performs both univariate and multivariate analysis
on the single subject EEG files. It operates by specifying a number
of relevant parameters as fields using the cfg variable. Cfg is short-
hand for configuration, and the cfg variable is used to pass these
parameters to the relevant ADAM function. The actual first-level
analyses are executed by the adam_MVPA_firstlevel function
(which contains the configuration variable containing the relevant
parameters between brackets). It does so by first reading in the
epoched EEG data of individual subjects in EEGLAB format (spe-
cified in cfg.filenames) from a location on the hard drive (specified
in cfg.datadir). Next, it baselines all trials to a window of (�200,
�100) (specified in cfg.erp_baseline). Note that that this baseline
window was chosen so that the baseline for the second search
display would never overlap with the first search display (see
Fig. 1, top). The data is also down-sampled to 250 Hz (specified
in cfg.resample) prior to classification to expedite the classification
analysis.

Next, it performs both a univariate and multivariate analysis.
The univariate analysis is executed by computing ERPs for all the
electrodes in the EEG data (specified in cfg.channels), separately for
targets appearing on the left or on the right of the search display as
well as for targets appearing on the top and the bottom of the
search display (specified in cfg.class_spec). These two analyses (left
versus right and top versus bottom) are executed and saved sepa-
rately, in a folder called 'LEFTRIGHT' and 'TOPBOTTOM'
respectively (specified in cfg.outputdir). We will see later how one
can use the ERPs that the function has produced to compute
the N2pc.

In addition, the function performs a tenfold (specified in cfg.
nfolds) leave-one-out cross-validated multivariate classification
analysis using a linear discriminant classifier ('BDM', short for back-
ward decoding model, specified in cfg.model), and it does this
across all the EEG electrodes included in the analysis (specified in
cfg.channels). As explained, the script above performs two first-
level analyses: the first one classifies targets appearing on the left of
the search display versus targets appearing on the right of the
display, and the second one classifies targets appearing on the top
versus targets appearing on the bottom of the search display. The
class definitions in cfg.class_spec specify which target positions are
classified in the analysis. Classes are specified using the cond_string
function, which merely converts integer numerals to comma-
separated strings, which is the input format that is required by the
ADAM toolbox.

After the first-level analyses are performed, the single subject
results are stored at the hard drive location specified in cfg.out-
putdir, which are later read back in when performing a group-level
analysis. Therefore, it is important to specify a meaningful directory

134 Johannes Jacobus Fahrenfort

name for the location of the first-level results. The directory name
should reflect which analysis was performed because (1) this direc-
tory needs to be indicated when running the group-level analysis
and (2) the name of this directory will be used by ADAM to denote
the analysis name in graphs. Note also that one can specify quite a
few additional parameters in the cfg variable during first-level anal-
ysis. Many of these are not covered here. Without specifying these
fields, the analysis is performed using default values. Detailed infor-
mation about some of the parameters that can be specified when
performing an analysis in ADAM, as well as the meaning of some
parameters (such as cross-validation) is beyond the scope of this
chapter. For more information about these parameters, type “help
adam_MVPA_firstlevel” in the MATLAB Command Window. In
addition, a freely available open access article is available for those
that require more general information regarding MVPA using the
ADAM toolbox; see [5].

Next, I describe how one can perform and visualize group-level
statistical analyses on these first-level results. As explained in the
introduction, the traditional method of identifying attentional
selection in experiments like these is using the N2pc. The N2pc is
typically computed by subtracting the ERPs on the ipsilateral side
of the target from the ERPs occurring on the contralateral side of
the target, using electrodes PO7 and PO8 (see the left panel of
Fig. 2 for the search display the subject is looking at and the
electrodes that need to be subtracted to compute the N2pc). In
the first group-level analysis, I illustrate how the ADAM toolbox
can extract the N2pc using the ERPs from the first-level analysis, to
compute a group-level N2pc for a single hemisphere. The actual

PO7 PO8

H3

erp2 (PO7, contralateral)
erp2 (PO8, ipsilateral)
ipsi-contra (subtract PO7,PO8)

Fig. 2 Illustration of N2pc component. Left: Illustration of a subject attentionally
selecting the red target on the right in a two-item display in Experiment 1. Right:
ERP responses on the ipsi- and contralateral electrode to the attended item, as
well as the difference between these two. This difference is the univariate N2pc,
here for one attended hemifield

Multivariate Analysis of Attentional Selection 135

script to compute these ERPs and to produce the resulting group-
level N2pc is given below.

%% extract electrodes P07 and P08, and also subtract them
cfg = [];
cfg.mpcompcor_method = 'none';
cfg.startdir = 'C:\EXP1\RESULTS';
cfg.electrode_def = {{'PO7'},{'PO8'}};
cfg.condition_def = 2;
cfg.timelim = [-100 400];
erpstats = adam_compute_group_ERP(cfg); % select the folder LEFTRIGHT when running this line
cfg.electrode_method = 'subtract';
erpstatsdif = adam_compute_group_ERP(cfg); % select the folder LEFTRIGHT once again

%% plot ERPs
cfg = [];
cfg.acclim = [-8.5 3.5]; % specifies the limits on the y-axis, not required
cfg.acctick = 2;
cfg.singleplot = 'yes';
cfg.line_colors = {[228,30,38]/255 [255,242,0]/255 [0,0,0]};
adam_plot_MVPA(cfg,erpstats,erpstatsdif);

The first part of this script loads the single subject data from the
RESULTS folder and computes group ERPs when executing the
function adam_compute_group_ERP. When this function exe-
cutes, a folder selection window pops up at the location specified
in cfg.startdir, after which one should manually select the LEFT-
RIGHT directory. Next, it extracts the single subject ERPs from
that directory and computes a group-level average of these single
subject results. It does so for the second class in the analysis which
contained targets presented on the right (specified using cfg.con-
dition_def) from electrode PO7 and PO8 (specified in cfg.electro-
de_def) within a temporal window of (100, 400) ms (specified in
cfg.timelim). No statistical testing is applied (multiple comparison
correction, specified as 'none' using cfg.mpcompcor_method).
When the adam_compute_group_ERP function is executed, the
output of the analysis is stored in a variable called erpstats. Next
in the script, the analysis is performed again, now subtracting the
ERP from electrode PO8 from PO7 to compute the right-
hemispheric N2pc (ipsilateral minus contralateral). This is done
by specifying cfg.electrode_method ¼ 'subtract' and the running
the same function again, outputting the result in the variable
erpstatsdif.

The second part of the script inputs the erpstats and the erp-
statsdif result variables into the adam_plot_MVPA function to plot
the results. This function produces a graphical depiction of the
ERPs that were computed by adam_compute_group_ERP. It
plots the separate ERPs from P07 (in red) and PO8 (in yellow) as
well as their difference (the N2pc, in black) together in a single
figure (cfg.singleplot ¼ 'yes'). Although not required, some addi-
tional parameters can be used to further configure the plot. For
example, cfg.acclim specifies the limits of the y-axis, and cfg.acctick
specifies the tick mark of the y-axis (for more information about
plotting parameters, type “help adam_plot_MVPA” in the

136 Johannes Jacobus Fahrenfort

MATLAB Command Window). Finally, cfg.line_colors specifies
which Red-Green-Blue (RGB) color values to use for the consecu-
tive plots (scaled between 0 and 1). For more information about
color specifications in MATLAB type “help colormap” in the
MATLAB CommandWindow. The result of the plotting operation
is shown in the right panel of Fig. 2.

However, this only shows the N2pc for a single hemisphere.
For the N2pc proper, one should compute the ipsilateral-
contralateral difference separately for targets appearing in the left
visual field and targets appearing the right visual field and subse-
quently average those subtractions. This is done using the script
below.

%% get total N2pc
cfg = [];
cfg.mpcompcor_method = 'cluster_based';
cfg.startdir = 'C:\EXP1\RESULTS';
cfg.electrode_def = {{'PO8'},{'PO7'};{'PO7'},{'PO8'}};
cfg.electrode_method = 'subtract';
cfg.condition_def = [1,2];
cfg.condition_method = 'average';
cfg.timelim = [-100 400];
n2pcstats = adam_compute_group_ERP(cfg); % select the folder LEFTRIGHT when running this line

%% plot N2pc
cfg = [];
cfg.acclim = [-2.5 1];
cfg.singleplot = 'yes';
adam_plot_MVPA(cfg,n2pcstats);

The only difference with the earlier script is that this time the
ERPs from both class 1 (targets appearing on the left) and from
class 2 (targets on the right) are extracted (again specified in cfg.
condition_def) and that for each of these, the ipsilateral electrode is
subtracted from the contralateral electrode (again specified in cfg.
electrode_def). The resulting subtractions are averaged (specified in
cfg.condition_method) and tested against zero using a two-sided t-
test against chance for each time sample. The statistical tests are
corrected for multiple comparisons using cluster-based permuta-
tion testing (specified using cfg.mpcompcor_method). This
method uses group-wise cluster-based permutation testing by tak-
ing the sum of the t-values for all contiguously significant time
points (p < 0.05) and computing the number of times this sum is
exceeded when computing the maximum cluster-based sum under
random permutation [5, 9].

The group average that is computed by adam_compute_grou-
p_ERP is stored in variable n2pcstats and subsequently plotted
using adam_plot_MVPA. The resulting figure can be found in
Fig. 3, left panel. This is the “traditional” N2pc that is often
reported in the literature [1, 2]. Note that the figure also contains
a vertical dotted line halfway the first peak. This is a measure of the
onset of the N2pc component. Note that taking the onset of the
cluster itself is an unreliable way of determining the onset latency of
an effect [10]. Further note that taking the peak latency is easily

Multivariate Analysis of Attentional Selection 137

distorted by neuronal and measurement noise [11, 12]. Instead, a
relatively straightforward and reliable way of characterizing tempo-
ral onsets is to measure the onset latency as the time when the rising
effect of the component has reached 50% of its full amplitude. This
is the standard method implemented in the ADAM toolbox, based
on freely available code [13]. The onset latency for the N2pc that is
estimated this way is stored in the group stats variable, in a field
called latencies. Thus, one can access the latency of the N2pc by
typing n2pcstats.latencies in the MATLAB command window. The
field GA (short for Grand Average) tells us what the onset latency is
of the N2pc when computed this way, which for this N2pc is
196 ms. Further below, we will assess whether multivariate mea-
sures of attentional selection result in similar onset latencies.

Although the N2pc has been a very successful measure of atten-
tional selection, it also has some prominent shortcomings. Themost
striking shortcoming is the fact that the N2pc relies on lateral
presentation of targets. For example, in Experiment 1 (Fig. 1, top
panel), targets can appear both on the horizontal dimension and at
the vertical dimension, but using the N2pc, one can only character-
ize the fingerprint of attentional selection on horizontally lateralized
targets. As an alternative to the N2pc, one can use multivariate
classification to characterize attentional selection, for example, clas-
sifying left versus right targets or classifying top versus bottom
targets. These first-level classification analyses were performed
when executing the initial script in the beginning of this chapter.
The script below computes the associated group-level results of
these classification analyses, both for the left versus right targets
and for the top versus bottom targets. Finally, it plots these results
in two separate graphs.

-100 0 100 200 300 400
time in ms

0.45

chance

0.55

0.60

0.65

0.70

A
U

C

 p < 0.05 (cluster based, 2-sided)

-100 0 100 200 300 400
time in ms

0.45

chance

0.55

0.60

0.65

0.70

A
U

C

 p < 0.05 (cluster based, 2-sided)

N2Pc Left versus right target Top versus bottom target

0 100 200 300
time in ms

-2.00

-1.00

0.00

1.00

V

 p < 0.05 (cluster based, 2-sided)

Fig. 3 Average N2pc and classification performance. Left: Average N2pc for left and right targets in Experiment
1. Computed using PO7 and PO8. See main text for details. Middle and right: Classification performance of
target position for left versus right targets (middle) and classification performance for top versus bottom
targets (right). Thick black lines reflect statistical tests that survive cluster-based permutation testing at
p < 0.05. Shaded areas show �s.e.m. Onset latency of the 50% amplitude of the peak is indicated by a
vertical dotted line. Note the similar temporal evolution between N2pc and classification performance

138 Johannes Jacobus Fahrenfort

%% get group-level classification performance
cfg = [];
cfg.mpcompcor_method = 'cluster_based';
cfg.startdir = 'C:\EXP1\RESULTS';
cfg.timelim = [-100 400];
cfg.reduce_dims = 'diag';
mvpastats = adam_compute_group_MVPA(cfg); % press OK when the selection dialog pops up

%% plot classification performance over time for the LEFTRIGHT and the TOPBOTTOM dimension
cfg = [];
cfg.acclim = [.45 .7];
cfg.acctick = .05;
cfg.splinefreq = 32;
cfg.line_colors = {[0,0,0] [0,0,0]};
adam_plot_MVPA(cfg,mvpastats);

The first part of the script performs the group-level classifica-
tion analysis on both contrasts: the horizontal dimension (left
versus right target contrast) and the vertical dimension (top versus
bottom target contrast). The analysis time window is restricted to
(�100, 400), specified in cfg.timelim. Classification performance is
extracted for the diagonal, so without analyzing temporal generali-
zation (specified in cfg.reduce_dims). This means that the data is
trained and tested on the same samples. Details regarding the
temporal generalization method are beyond the scope of this chap-
ter, but more information can be found in other sources
[5, 14]. The actual group-level analysis is performed by the func-
tion adam_compute_group_MVPA. When calling that function,
one needs to specify the directory from which the data will be
read, which in this case is the same directory as the cfg.startdir, so
one can simply press OK after which group analyses from both
analyses from contrasts are executed, performing t-testing against
chance- level performance and applying cluster-based permutation
to correct for multiple comparisons. The results are output in a
variable called mvpastats, which has two elements: mvpastats(1) for
the left-right classification analysis and mvpastats(2) for the
top-bottom classification analysis.

Note that although testing against chance is common in the
decoding literature, one caveat when using t-statistics on classifica-
tion performance is that this does not allow population-level infer-
ence, in fact producing fixed effects rather than random effects
results; see [15]. The implication is that one cannot formally draw
population-level inferences based on such analyses, restricting con-
clusions to the sample that was tested. For studies that require
population-level inference, it would be preferred to either use a
completely separate training set (performing the training on differ-
ent subjects or obtaining training data from a different task) or to
replace the t-test with a statistic that explicitly evaluates information
prevalence across the sampled subjects again; see [15].

In the second half of the script, the results in the mvpastats
variable are plotted side by side, both in black outline. The cfg
specifications have been explained before, except the splinefreq
field. The splinefreq field causes the timeseries to be smoothed for

Multivariate Analysis of Attentional Selection 139

visualization purposes. Smoothing is achieved by fitting a spline on
the performance timeseries after downsampling it to 32 Hz (speci-
fied in cfg.splinefreq). The degree of smoothing is controlled by the
resampling rate, with lower rates resulting in a smoother graph.
The resampled series is centered on peak performance, so that the
height of the peak is not affected by the smoothing procedure. This
operation is applied for visualization purposes only; all statistical
tests are performed on the unsmoothed timeseries.

The actual plotting operation is performed by the
adam_plot_MVPA function. The result of the plotting operation
is shown in the right two panels of Fig. 3. Note that these graphs no
longer show μV on the y-axis, but instead show Area Under the
Curve (AUC), a metric that indicates how well two or more classes
can be discriminated by the classifier [16]. AUC typically runs
between 0.5 (chance performance) and 1.0 (maximum classification
accuracy). Interestingly, one can see from Fig. 3 how the two right
panels show AUC time courses that are visually similar to the time
course of the N2pc in the left panel. For targets on the horizontal
meridian, this can be considered somewhat unsurprising, but a
similar time course could not have been extracted using the stan-
dard N2pc approach for the vertical meridian. Thus, here, we see
the first clear advantage of the multivariate classification approach.

As before, temporal onsets are automatically computed, reflect-
ing the point in time where the rising signal reaches 50% of its peak
amplitude [13]. As explained before, the exact values of the tempo-
ral onsets can be found by inspecting the latencies field of the
mvpastats variable. Typing mvpastats.latencies returns two results,
one for the left-right dimension (196 ms) and the other for the
top-bottom dimension (204 ms). Note that the onset latency for
the left-right is identical to the onset latency of the N2pc, and the
latency for the top-bottom dimension is highly similar. One can test
whether two onset latencies are different using jackknifing. Jack-
knifing is the practice of repeatedly computing an average while
leaving out one subject, until each subject has been left out once.
This way, you get the same number of observations as you have
subjects in the dataset, but each observation is a group average with
one of the subjects left out. This is useful when the single subject
results are too noisy to determine a peak for every single subject
(and thus to compute the 50% amplitude latency onset). The
resulting jackknifed values can be used in a regular t-test or
ANOVA, as long the resulting t- or F-values are corrected for
jackknifing [17, 18]. This correction is applied automatically in
the t-test function jackT from the latency package [13], which is
included in the ADAM toolbox. Thus, to test whether the N2pc
has a different onset latency from the left-right classification time-
series, one can simply type:

jackT(n2pcstats.latencies.jackknife, mvpastats(1).latencies.jackknife)

140 Johannes Jacobus Fahrenfort

in the MATLAB command window. As a result, the function jackT
will run a corrected t-test based on the jackknife latency onsets in
the latencies fields of the n2pcstats and left vs. right classification in
the mvpastats variables. Unsurprisingly, the result shows that the
onset latencies between N2pc and classification are not significantly
different; t(11) ¼ 0, p ¼ 1, providing converging evidence that the
N2pc and the classification results tap into the same underlying
signals. Similarly, one can also test whether the onsets between
classifying left vs. right and classifying top vs. bottom are different
by typing:

jackT(mvpastats(1).latencies.jackknife, mvpastats(2).latencies.jackknife)

Here too, the onset latencies are not significantly different
between left vs. right and top vs. bottom; t(11) ¼ �1.62,
p ¼ 0.13.

Multivariate classification seems the superior approach com-
pared to the N2pc, as it allows one to characterize attentional
selection both on the horizontal and on the vertical meridian.
Moreover, it precludes one from having to perform a priori elec-
trode selection. However, one might object that the downside of
the approach is that it is hard to ascertain the source of the perfor-
mance metric in the brain. Although the classifier produces training
weights for the electrodes for every time sample, these classifier
weights cannot be directly interpreted as neural sources [19]. Luck-
ily, there are alternatives. The easiest way of characterizing the
underlying cortical activity is to transform the classifier weights to
forward weights by multiplying them with the data covariance
matrix. Because the weights obtained from linear discriminant
analysis contain the difference between the two compared sets
normalized by the covariance matrix, this operation creates activa-
tion patterns that return the mass-univariate difference between the
compared conditions, but which unlike classifier weights, are inter-
pretable as neural sources [19]. Forward-transformed weights are
equivalent to the univariate difference between conditions, except
that they are derived from the classification analysis itself, providing
a sanity check that the classification analysis results in a meaning-
ful pattern of results. The ADAM toolbox automatically com-
putes forward-transformed weights during the first level and
stores these in the output variable during group-level analysis.
The script to plot the forward-transformed weights for the two
classification analyses (right versus left and top versus bottom) is
given below.

%% plot topographic maps
cfg = [];
cfg.plotweights_or_pattern = 'covpattern';
cfg.timelim = [240 250];
cfg.weightlim = [-1.8 1.8];
cfg.mpcompcor_method = 'cluster_based';
adam_plot_BDM_weights(cfg,mvpastats);

Multivariate Analysis of Attentional Selection 141

The adam_plot_BDM_weights function computes two
topographic plots from the mvpastats data, which can be found in
Fig. 4. The cfg variable first specifies that the function should plot the
pattern based on the covariance matrix (indicated in cfg.plotweight-
s_or_pattern). Further, it averages the plot in the temporal window
between 240 and 250 ms (specified in cfg.timelim), approximately
corresponding to the peak of the performance timeseries. Each of the
electrodes is tested against zero using a t-test, after which a cluster-
based permutation test is executed based on the adjacency of neigh-
boring electrodes to correct for multiple comparisons. Electrodes
that survive the cluster-based permutation test are indicated as thick
dots on topographic map. Note that the adam_plot_BDM_weights
function spatially normalizes the pattern for every subject prior to
computing the group average, so that the amplitude at every elec-
trode is expressed as a Z-score across electrodes.

To further highlight the advantage of multivariate classification
to characterize attentional selection, we now move our attention to
the second experiment. In this experiment, targets were not pre-
sented on the horizontal or on the vertical meridian, but rather in a
circular array (see Fig. 1, bottom). Here, we first ask the question
whether it is possible to characterize attentional selection without
even crossing the meridian, so, for example, within a quadrant.

Left versus right
at 240 - 250 ms.

Top versus bottom
at 240 - 250 ms.

z-score

-1.5
-1
-0.5
0
0.5
1
1.5

Fig. 4 Activation patterns associated with peak decoding accuracy
(240–250 ms) in Experiment 1. Derived from the product of the weight vectors
and the covariance matrix, normalized across space (see main text). Left: The
pattern associated with left versus right decoding. Note the clearly lateralized
distribution. This lateralized pattern shows the distribution of neural activity
underlying successful discrimination between targets appearing on the left and
the right of fixation and is equivalent to the mass-univariate difference between
left and right targets. Right: The pattern associated with top versus bottom
decoding, now showing a posterior-anterior distribution. Thick electrode dots
belong to clusters having p < 0.05 under cluster-based permutation testing

142 Johannes Jacobus Fahrenfort

For example, we may ask whether one can dissociate attentional
selection of targets within each of the quadrants of the visual field,
such as between targets on position 1 and targets on position
2, between position 3 and 4, etc. (see Fig. 1, right bottom). The
script to execute the first level decoding analyses to extract these
analyses is given below.

%% general information about experiment 2
filenames = { 'DecExp3_1_R' 'DecExp3_2_G' 'DecExp3_3_B' 'DecExp3_4_R' 'DecExp3_5_G' ...

'DecExp3_6_B' 'DecExp3_7_R' 'DecExp3_8_G' 'DecExp3_9_B' 'DecExp3_10_R' ...
'DecExp3_11_G' 'DecExp3_12_B' 'DecExp3_13_R' 'DecExp3_14_G' 'DecExp3_15_B' };

for c=1:8
pos{c} = [10+c 20+c];

end

%% settings for first level quadrant analysis of experiment 2
cfg = [];
cfg.datadir = 'C:\EXP2\EEGDATA';
cfg.filenames = filenames;
cfg.erp_baseline = [-.1,0];
cfg.resample = 250;
cfg.nfolds = 10;
cfg.model = 'BDM';
cfg.channels = 'ALL';

% classify attentional selection in the upper right quadrant
clear class_spec;
class_spec{1} = cond_string(pos{1});
class_spec{2} = cond_string(pos{2});
cfg.class_spec = class_spec;
cfg.outputdir = 'C:\EXP2\RESULTS\QUADRANT\1_2';
adam_MVPA_firstlevel(cfg);

% classify attentional selection in the bottom right quadrant
clear class_spec;
class_spec{1} = cond_string(pos{3});
class_spec{2} = cond_string(pos{4});
cfg.class_spec = class_spec;
cfg.outputdir = 'C:\EXP2\RESULTS\QUADRANT\3_4';
adam_MVPA_firstlevel(cfg);

% classify attentional selection in the bottom left quadrant
clear class_spec;
class_spec{1} = cond_string(pos{5});
class_spec{2} = cond_string(pos{6});
cfg.class_spec = class_spec;
cfg.outputdir = 'C:\EXP2\RESULTS\QUADRANT\5_6';
adam_MVPA_firstlevel(cfg);

% classify attentional selection in the upper left quadrant
clear class_spec;
class_spec{1} = cond_string(pos{7});
class_spec{2} = cond_string(pos{8});
cfg.class_spec = class_spec;
cfg.outputdir ='C:\EXP2\RESULTS\QUADRANT\7_8';
adam_MVPA_firstlevel(cfg);

The above script performs analyses analogous to the analysis
that was performed in Experiment 1, but now within the four
quadrants of Experiment 2. The group-level analyses can be exe-
cuted and plotted using the script below.

Multivariate Analysis of Attentional Selection 143

%% get group-level classification performance within each quadrant quadrant, experiment 2
cfg = [];
cfg.startdir = 'C:\EXP2\RESULTS';
cfg.mpcompcor_method = 'cluster_based';
cfg.timelim = [-100 400];
cfg.reduce_dims = 'diag';
cfg.channelpool = 'ALL';
cfg.plotmodel = 'BDM';
mvpastats_quadrant = adam_compute_group_MVPA(cfg); % select the folder QUADRANT

%% plot classification performance over time for each of the four quadrants
cfg = [];
cfg.acclim = [.46 .7];
cfg.acctick = .05;
cfg.splinefreq = 32;
cfg.line_colors = {[0,0,0],[0,0,0],[0,0,0],[0,0,0]};
cfg.plotorder = {'7_8' '1_2' '5_6' '3_4' };
cfg.nolatency = true;
adam_plot_MVPA(cfg,mvpastats_quadrant);

The first part of the script once again reads in the first level
results and computes the group-level results. When the func-
tion adam_compute_group_MVPA is executed, a dialog
appears. Select “QUADRANT” to read in the analyses from
the four different quadrants. These will be stored in the vari-
able mvpastats_quadrant, the contents of which can subse-
quently be plotted using adam_plot_MVPA. The cfg that is
used to plot the results is much the same as before, with two
minor additions. A field plot_order was added to control
the order in which the analyses are plotted. The names in
plot_order are taken directly from the folder names that are
used to store the different first-level analyses. Further, a field
nolatency is used to preclude the plotting of latency informa-
tion. Although the graphs in Fig. 5 clearly show that it is
possible to classify which item was attentionally selected within
each quadrant, eyeballing the data already suggests that classi-
fier performance is not reliable enough over time to estimate
consistent onset latencies (e.g., see the top left panel in Fig. 5).
For this reason, I chose not to plot latency information in this
graph.

Indeed, to reliably determine onset latency, the analysis
would require more data. The search display has eight target
positions, so to increase the signal-to-noise ratio, one can per-
form an 8-way classification analysis, inputting each of the eight
positions as classes into the classification analysis. This should
provide the best possible estimate in Experiment 2 of the time
course of attentional selection across the display and is achieved
using the script below (keeping the same filename and condition
definitions as in the quadrant analysis above).

144 Johannes Jacobus Fahrenfort

%% settings for first level analysis of all positions in experiment 2
cfg = [];
cfg.datadir = 'C:\EXP2\EEGDATA';
cfg.filenames = filenames;
cfg.model = 'FEM,BDM';
cfg.resample = 250;
cfg.channels = 'ALL';
cfg.erp_baseline = [-.1,0];
cfg.sigma_basis_set = 0;

% classify attentional selection across all eight target positions
clear class_spec;
for c = 1:8

class_spec{c} = cond_string(pos{c});
end
cfg.class_spec = class_spec;
cfg.outputdir = 'C:\EXP2\RESULTS\ALLPOS';
adam_MVPA_firstlevel(cfg);

Note that the above script not only runs a decoding analysis
('BDM' specified in cfg.model) but also a forward encoding analysis
('FEM' specified in cfg.model). We will return to this analysis in the
next section. But before we do so, we first plot the result of the
8-way decoding analysis and determine the concomitant onset
latency from that analysis. Below is the script to compute the
group results and plot the 8-way classification analysis.

 p < 0.05 (cluster based, 2-sided) p < 0.05 (cluster based, 2-sided)

 p < 0.05 (cluster based, 2-sided) p < 0.05 (cluster based, 2-sided)

Position 7 versus 8 Position 1 versus 2

Position 5 versus 6 Position 3 versus 4

-100 0 100 200 300 400
time in ms

chance

0.55

0.60

0.65

0.70
A

U
C

-100 0 100 200 300 400
time in ms

chance

0.55

0.60

0.65

0.70

A
U

C

-100 0 100 200 300 400
time in ms

chance

0.55

0.60

0.65

0.70

A
U

C

-100 0 100 200 300 400
time in ms

chance

0.55

0.60

0.65

0.70

A
U

C

Fig. 5 Per quadrant decoding accuracy of target position in Experiment 2. Thick black lines reflect statistical
tests that survive cluster-based permutation testing at p < 0.05. Shaded areas are �s.e.m

Multivariate Analysis of Attentional Selection 145

%% get group-level 8-way classification performance, experiment 2
cfg = [];
cfg.startdir = 'C:\EXP2\RESULTS';
cfg.mpcompcor_method = 'cluster_based';
cfg.timelim = [-100 400];
cfg.reduce_dims = 'diag';
cfg.channelpool = 'ALL';
cfg.plotmodel = 'BDM';
mvpastats_8way = adam_compute_group_MVPA(cfg); % select the folder ALLPOS

%% plot 8-way decoding
cfg = [];
cfg.acclim = [.45 .75];
cfg.acctick = .05;
cfg.splinefreq = 32;
adam_plot_MVPA(cfg,mvpastats_8way);

When the adam_compute_group_MVPA function executes, a
folder selection window pops up in which one should manually
select the ALLPOS folder. This folder contains the first-level results
for all 8-way classification of the eight target positions. As before,
this will compute the group results and assign this outcome to a
variable (mvpastats_8way), subsequently plotting this outcome
using the adam_plot_MVPA function. The resulting plot can be
found in Fig. 6 below, which now also highlights the 50% peak
amplitude onset latency using a vertical dotted line. The numerical
value associated with the 50% peak amplitude onset latency in this
plot can be found by typing mvpastats_8way.latencies.GA, which
returns 220 ms. Interestingly, this onset latency seems slightly later

8-way classification analysis

-100 0 100 200 300 400
time in ms

chance

0.55

0.60

0.65

0.70

0.75

A
U

C

 p < 0.05 (cluster based, 2-sided)

Fig. 6 8-way classification accuracy of target position in Experiment 2. Note
again the similarity to the temporal evolution of the N2pc (Fig. 3, left) and
decoding performance in Experiment 1 (Fig. 3, middle and right), although
plausibly having a slightly later onset because of the increase in the number
of items on the screen. Thick black lines reflect statistical tests that survive
cluster-based permutation testing at p < 0.05. The shaded area is �s.e.m

146 Johannes Jacobus Fahrenfort

than the onset latencies that were identified in Experiment 1, possibly
because of the larger number of items in the display. Determining the
true cause of this apparent latency difference is beyond the scope of
the current chapter and would require further experimentation. I
suffice to point out here that one can investigate such onset latency
differences using the methods that are explained in this chapter.

3 Characterizing the N2pc Using Forward Encoding

So far, this chapter has covered classification approaches to charac-
terize attentional selection. In this section, I discuss a complemen-
tary multivariate approach, which is to use a forward encoding
model to establish a continuous relationship between an experi-
mental variable of interest and cortical activity [4, 20, 21]. This
approach has been further extended using inverted encoding mod-
els that estimate model responses from the data in so-called channel
tuning functions (CTFs); e.g., see [22–25]. Below, I first describe
the general approach that is taken in these models, and I discuss
some caveats of the method [26–28]. Next, I provide details and
script that applies a forward encoding model (FEM) to the data
obtained from Experiment 2 and show how it can be used to
reconstruct cortical activity for conditions that did not occur dur-
ing the experiment.

The principal goal of forward encoding models is to characterize
a direct link between a continuous stimulus parameter space and the
cortical responses that aremeasured (here throughEEG). The advan-
tage of this approach is that one can predict (reconstruct) cortical
activations for novel stimulus values that were never presented during
the experiment or stimulus parameter estimates for novel brain
data for which no condition labels were acquired [20]. In addition,
a number of studies have suggested that one can use inverted
encoding models to estimate the model response (referred to as
channel tuning function, or CTF), to assay of how broad-scale corti-
cal activity is tuned to a continuous experimental variable, somewhat
akin to neural tuning functions at the level of single neurons [29].

Despite their initial promise, it has recently been shown that the
width of a CTF not only reflects the degree of tuning to the
parameter space but also the signal-to-noise ratio of the data on
which the model is fitted [27]. Moreover, it has been shown that
such a fitting procedure recovers arbitrary starting parameters of
the model, rather than a recovering a CTF that reflects the actual
relationship between the experimental variable and cortical activity
[26]. With these caveats in mind, one might still use the simplest
form of these models (a delta function) to construct a CTF to
provide insight into the degree to which neighboring experimental
parameter values produce overlapping cortical activations.

Multivariate Analysis of Attentional Selection 147

Here, we generate a FEM of the data in the second experiment
(Fig. 2, bottom). To do so, we employ a procedure previously
described by Brouwer and Heeger [20] using the same tenfold
cross validation scheme as in the previously described classification
analyses. In this procedure, the training set is used to estimate the
response in each of eight hypothetical position “channels”
(corresponding to the eight target positions on the screen). The
nomenclature “channels” here should not be confused with MEG
or EEG sensors; EEG sensors are referred to as electrodes in the
current chapter. To provide an initial estimate of the channel
responses, a preliminary “basis set” is used to estimate the weights
that specify the relationship between the observed multivariate
signal and the channel responses. Typically, authors have used a
basis set in the form of a Gaussian or a sinusoid raised to a power,
but as explained above, it has recently been shown that CTF esti-
mation using this method can recover any arbitrary basis set, rather
than assaying the true relationship between the continuous experi-
mental variable under investigation and the measured multivariate
activity [26].

For this reason, I recommend here to only use the simplest
form of the basis set, containing a 1 for the corresponding target
position and a 0 for all other positions, so that the shape of any
resulting CTF cannot reflect the initial basis set, but must be caused
by the data itself. A binary on-off basis set like this is sometimes also
referred to as a delta function. Here, we use eight basis sets (one for
each target position), each shifted by one position compared to its
neighbor, to construct a regression matrix C1. C1 has the form
k � n1, in which k is the number of position channels (1 to 8) and
n1 is the number of trials in the training set. Next, we estimate the
response amplitude to each of the eight hypothetical position
channels by performing an ordinary least squares regression of
the C1 matrix onto the B1 matrix from the EEG training set.
B1 contained EEG data of the form m � n1, in which m is number
of electrodes and n1 is the number of trials in the training set. This
regression yields a weight matrix W in which each electrode obtains
a regression coefficient (a “weight”) for each hypothetical channel.
The weight matrix W has the formm� k, in which m is the number
of electrodes and k is the number of position channels.

Next, the model is inverted by performing ordinary least
squares regression of these weights onto the B2 matrix from the
EEG testing set to produce the estimated channel responses for
each trial. B2 has the form m � n2, in which m is number of
electrodes and n2 is the number of trials in the testing set. The
resulting estimated channel responses are contained in matrix C2,
having the form k � n2, in which k are the observed channel
responses and n2 are the trials in the testing set. This procedure
is repeated for all folds in the train-test procedure, until all data

148 Johannes Jacobus Fahrenfort

has been tested once. Next, the channel responses are averaged
across trials in the testing set, separately for each of the eight trial
types that correspond to each of the eight target positions on the
screen.

The channel responses from this testing phase in combination
with the associated weights contain the validated and invertible
one-to-one relationship between a particular attended location in
the search display and the multivariate EEG response. The script to
perform the above procedure was executed when specifying 'FEM'
during the first-level analyses of Experiment 2. The (averaged) C2
channel responses constitute a CTF per condition. These can be
shifted to a common center, so that the channel responses for each
of the eight target positions are aligned and averaged to obtain a
canonical CTF. Mathematical (less verbal) descriptions as well as
more graphical depictions of this train-test estimation procedure
have been provided elsewhere, e.g., [20–28]. The script below
extracts and plots the CTFs from the first-level analyses.

%% compute FEM in experiment 2
cfg = [];
cfg.startdir = 'C:\EXP2\RESULTS';
cfg.mpcompcor_method = 'cluster_based';
cfg.plotmodel = 'FEM';
cfg.channelpool = 'ALL';
cfg.timelim = [-100,1000];
cfg.reduce_dims = 'diag';
femstats = adam_compute_group_MVPA(cfg); % select the folder ALLPOS

%% plot CTF at 260-270 ms
cfg = [];
cfg.plotfield = 'CTFpercond';
cfg.shiftindiv = true;
cfg.weightlim = [-.2 .6];
cfg.CTFtime = [260 270];
cfg.BLtime = [-100 0];
CTF = adam_plot_CTF(cfg,femstats);

First, it extracts the group-level channel responses and
corresponding weights using adam_compute_group_MVPA (cfg.
plotmodel as 'FEM') and stores these results in a stats variable called
femstats. Next, it uses the function adam_plot_CTF to plot the
CTF for each condition (specified in cfg.plotfield as 'CTFpercond')
in the period between 260 and 270 ms for the CTF (specified in
cfg.CTFtime, corresponding the peak classification accuracy in
Fig. 6) as well as the CTF in the baseline between �100 and 0 ms
(specified in cfg.BLtime). The resulting figure is shown in the top
left panel of Fig. 7. These CTFs are taken from the condition-
specific averages of C2, but note that these responses are shifted
to a common center, so that the channel responses for each of the
eight target positions are aligned. This is specified by indicating ctf.
shiftindiv¼ true (see labels under the x-axis of the figure to see how
they were shifted). One can also plot the average of these shifted
condition-specific CTFs to show the canonical CTF. This can be

Multivariate Analysis of Attentional Selection 149

done by running the same script as above, the only difference being
that cfg.plotfield should be changed to 'CTF' prior to running the
script, like this:

cfg.plotfield = 'CTF';

Figure 7 top right shows the averaged empirical CTF across
conditions. Importantly, we used a basis set that did not make any
assumptions about the shape of the CTF beforehand (the delta
function), so we can be sure that the CTF reflects the relation-
ship between an experimental parameter of interest (the hypo-
thetically attended location channel, on the x-axis) and the
strength of the multivariate response (on the y-axis). What this

4 -3 -2 -1 0 1 2 3 4
channel

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ch
an

ne
l r

es
po

ns
e

CTF
pre-stim baseline

1 2 3 4 -3 -2 -1 0 1

channel

-0.2

0

0.2

0.4

0.6

ch
an

ne
l r

es
po

ns
e condition 1

2 3 4 -3 -2 -1 0 1 2

channel

condition 2

3 4 -3 -2 -1 0 1 2 3

channel

condition 3

4 -3 -2 -1 0 1 2 3 4

channel

condition 4

-3 -2 -1 0 1 2 3 4 -3
channel

-0.2

0

0.2

0.4

0.6

ch
an

ne
l r

es
po

ns
e condition 5

-2 -1 0 1 2 3 4 -3 -2
channel

condition 6

-1 0 1 2 3 4 -3 -2 -1
channel

condition 7

0 1 2 3 4 -3 -2 -1 0
channel

condition 8

0 250 500 750 1000
time in ms.

4

-3

-2

-1

0

1

2

3

4

ch
an

ne
l

-0.2

-0.1

0

0.1

0.2

0.3

0.4
CTF slope > 0
cluster-based p < .05

-4

-3

-2

-1

0

1

2

3

4

re
sp

on
se

 a
m

pl
itu

ed
 (a

rb
itr

ar
y

un
its

)

Canonical CTF across conditions
CTF
pre-stim baseline

Fig. 7 Channel tuning functions. Top left: CTFs for individual conditions show that the CTF is not driven by
particular target positions. Top right: CTF for the 260–270 ms window and CTF during baseline (�100 to 0 ms)
obtained by shifting the individual condition CTFs to align to the same channel. Bottom left: CTF development
over time in which color reflects channel responses. The black line near the time axis shows the time windows
where the slope of the CTF is significantly different from 0 (p< 0.05, cluster-based permutation test). Bottom
right: Topographic weight plots for each condition in the 260–270 ms time window. Weights from forward
models are directly interpretable in terms of neural sources. These plots therefore show how neural activity
changes as a function of variability in attended target position

150 Johannes Jacobus Fahrenfort

CTF shows is that there is some degree of overlap between
multivariate responses for neighboring attended locations, with
the caveat that the exact strength of this overlap as quantified by
the CTF is also affected by the signal-to-noise ratio [27]. Note
further that in the top of Fig. 7, we plotted the CTFs during
peak classification performance, between 260 and 270 ms. How-
ever, the estimation procedure was done for every time sample,
yielding a CTF over time. The CTF over time can also be
plotted, using the script below.

%% plot CTF over time
cfg = [];
cfg.plotfield = 'CTF';
cfg.reduce_dims = 'diag';
cfg.colorlim = [-.2, .4];
adam_plot_CTF(cfg,femstats);

The script is the same as before, the only difference being
that the we no longer specify CTFtime, so that the function plots
the CTF over the entire time interval rather than averaging over
a time window, now using color to denote the strength of the
channel response for every time point, and plotting the channels
on the y-axis. The resulting plot can be found in Fig. 7, left
bottom. Aside from plotting CTFs, one might also be interested
in knowing the topographic distribution of these responses. For-
tunately, the weights resulting from a forward encoding model
can be interpreted directly as a neural source [19]. The script to
plot the weights for each of the eight target positions is given
below.

%% plot FEM weights, experiment 2
cfg = [];
cfg.timelim = [260 270];
cfg.mpcompcor_method = 'none';
cfg.normalized = false;
adam_plot_FEM_weights(cfg,femstats);

This produces the topographic weight maps for each of the
eight target positions. This is shown in Fig. 7, bottom right. Note
that no statistics are applied (cfg.mpcompcor_method as 'none'),
and the plots are not spatially normalized (cfg.
normalized ¼ false).

Finally, we establish how a forward encoding model can be
used to reconstruct cortical activity for experimental stimulus
values that were used to generate the model. The top left of
Fig. 8 shows the target display from Experiment 2, containing
four target positions that were not present in the experiment
(top, bottom, left, and right position). The aim of the following
section is to reconstruct cortical activity associated with these
positions using the specified forward model. The first step in
this reconstruction is to construct CTFs (channel responses)
that would have occurred when these positions would have

Multivariate Analysis of Attentional Selection 151

occurred in the experiment. For the top position, this would be
the interpolated CTF between location 8 and 1. For the right
position, this would be the interpolated CTF between location
2 and 3 and so forth. These CTFs are generated by taking the
canonical CTF and using it to generate these interpolated CTFs.
The CTF values during peak classification response were returned
when plotting that CTF above (CTF ¼ adam_plot_CTF(cfg,fem-
stats) in the script). These values are used below to create the
channel-specific CTFs.

z-score

left versus right top versus bottom

1

4
3

2

5
6

7
8

left right

top

bot.

top
bottom
right
left

1 2 3 4 5 6 7 8
target position

0

0.1

0.2

0.3

ch
an

ne
l r

es
po

ns
e

-1.5
-1
-0.5
0
0.5
1
1.5

Fig. 8 Reconstructing the neural signature of attentional capture for target
positions that were never presented during Experiment 2. Top left: The target
positions that are reconstructed: top, bottom, left, and right. Top right: The
constructed channel responses that are associated with these positions using
the CTF from Fig. 7 (see main text for details). Top is in between target position
8 and 1, so the channel response to top is constructed by averaging the
hypothetical channel response to position 8 and position 1. Similarly, right is
created from averaging channel responses to 2 and 3, etc. Any position on the
circle can be constructed using a weighted average of channel responses. Left,
right, bottom, and top weights were reconstructed using the product of the
constructed channel responses and the weight matrix at 260–270 ms. Bottom
left: The left versus right pattern was generated by subtracting the left from the
right pattern. Bottom right: The top versus bottom pattern was created by
subtracting the bottom pattern from the top pattern. Note the similarity with
the left-right and top-bottom patterns from Experiment 1. Patterns are normal-
ized across electrodes. Thick electrode dots survived cluster-based permutation
testing under p < 0.05

152 Johannes Jacobus Fahrenfort

%% create new CTFs from the canonical CTF
basis_set = mean(CTF.indivCTFmean); % a basis set created from the canonical CTF

% mirror
basis_set = (basis_set + basis_set(end:-1:1))/2;
basis_set = basis_set(2:9); % remove duplicate end point

% generate channel responses for each condition (shifted)
old_chan_responses = nan(numel(basis_set),numel(basis_set));
for c=1:numel(basis_set)

old_chan_responses(:,c) = circshift(shiftdim(basis_set),-floor(numel(basis_set)/2)+c);
end
% interpolate new channel response sets for positions between 1 and 8, between 4
% and 5 (the vertical ones) and between 2 and 3 and 6 and 7 (the horizontal ones)
new_chan_responses = nan(numel(basis_set),4);
new_chan_responses(:,1) = mean([old_chan_responses(:,8) old_chan_responses(:,1)],2);
new_chan_responses(:,2) = mean([old_chan_responses(:,4) old_chan_responses(:,5)],2);
new_chan_responses(:,3) = mean([old_chan_responses(:,2) old_chan_responses(:,3)],2);
new_chan_responses(:,4) = mean([old_chan_responses(:,6) old_chan_responses(:,7)],2);

% plot the result
figure; plot(new_chan_responses);

These channel responses for top, bottom, left, and right are
plotted in Fig. 8, top right. Next, these interpolated channel
responses are used to generate new weight matrices for these posi-
tions. This is done in the first section of the script below.

%% reconstruct patterns, respectively for top, bottom, right and left
for cSubj = 1:size(femstats.weights.indivWeights,1) % subject loop

for cT = 1:size(femstats.weights.indivWeights,2) % time loop
W = squeeze(femstats.weights.indivWeights(cSubj,cT,:,:)); % extract channel weights
indivWeights(cSubj,cT,:,:) = W*new_chan_responses; % new weights

end
end

%% subtract channel weights on the horizontal and vertical meridian
newIndivWeights(:,:,:,1) = indivWeights(:,:,:,4) - indivWeights(:,:,:,3); % bottom from top
newIndivWeights(:,:,:,2) = indivWeights(:,:,:,1) - indivWeights(:,:,:,2); % left from right

%% insert new subtractions into femstats for plotting
constructed_femstats = femstats; % copy what we had
constructed_femstats.weights.indivWeights = newIndivWeights; % inject new weights

% plot reconstructed patterns
cfg = [];
cfg.timelim = [260 270];
cfg.weightlim = [-1.8 1.8];
cfg.mpcompcor_method = 'cluster_based';
adam_plot_FEM_weights(cfg,constructed_femstats);

The second section of this script subtracts the bottom from the
top and the left from the right position, to get the distribution
associated with top versus bottom and left versus right. Finally,
these new weight matrices are injected into a femstats variable for
plotting using the adam_plot_FEM_weights function that we used
before. The resulting topographic maps are plotted in Fig. 8, bot-
tom. If these topographic plots look familiar, that is no coincidence.
They seem to nicely correspond to the topographic maps that were
obtained in the first experiment (Fig. 4). However, a crucial
difference between Figs. 4 and 8, bottom, is that the topographies

Multivariate Analysis of Attentional Selection 153

in Fig. 4 were derived from actual data in Experiment 1, whereas
the topographies in Fig. 8 were constructed from the forward
encoding model and do not correspond to actual data that was
collected during Experiment 2. The correlation between the topo-
graphic maps from Experiment 1 and Experiment 2 is extremely
high (r ¼ 0.85, p < 10�6 for the horizontal meridian and r ¼ 0.86,
p < 10�6 for the veridical meridian), thus providing converging
evidence that the forward encoding model is able to successfully
construct cortical activation maps for data that was not actually
present in the data that was used to generate the forward encoding
model.

4 Conclusion

This chapter compared univariate to multivariate methods when
analyzing EEG data obtained during tasks in which subjects need to
use feature-based attention to select items in a display. This shows
that multivariate classification is superior to traditional univariate
analysis when characterizing the spatiotemporal profile of atten-
tional selection. Experiment 1 shows howmultivariate classification
analyses enable one to not only assess attentional selection on the
horizontal meridian but also on the vertical meridian. Experiment
2 shows that one can use classification analyses to assess the time
course of attentional selection within quadrants of the visual field
and that one can even look at the time course of attentional selec-
tion across a large number of attended positions. Further, Experi-
ment 2 shows how one can use a forward modeling approach to
construct spatiotemporal responses for locations that were never
attended during the experiment. The chapter has also demon-
strated how one can assess onset latencies, as well as how one can
plot spatiotemporal maps of both decoding and forward encoding
analyses. Together, this should provide a useful introduction for
those in the field of feature-based attentional selection that want to
move from traditional univariate analysis to multivariate analysis.

Acknowledgments

I would like to thank Anna Grubert, Martin Eimer, and Chris
Olivers for allowing me to freely use and share the data from
these experiments, as well as the analysis plans that we used on
these data. This chapter would not have existed without them.

154 Johannes Jacobus Fahrenfort

References

1. Eimer M (1996) The N2pc component as an
indicator of attentional selectivity. Electroence-
phalogr Clin Neurophysiol 99(3):225–234.
https://doi.org/10.1016/0013-4694(96)
95711-9

2. Luck SJ, Hillyard SA (1994) Electrophysiolog-
ical correlates of feature analysis during visual
search. Psychophysiology 31(3):291–308

3. Woodman GF (2010) A brief introduction to
the use of event-related potentials (ERPs) in
studies of perception and attention. Atten Per-
cept Psychophys 72(8):2031–2046. https://
doi.org/10.3758/APP.72.8.2031

4. Fahrenfort JJ, Grubert A, Olivers CNL, Eimer
M (2017) Multivariate EEG analyses support
high-resolution tracking of feature-based atten-
tional selection. Sci Rep 7(1):1886. https://doi.
org/10.1038/s41598-017-01911-0

5. Fahrenfort JJ, van Driel J, van Gaal S, Olivers
CNL (2018) From ERPs to MVPA using the
Amsterdam decoding and modeling toolbox
(ADAM). Front Neurosci 12. https://doi.
org/10.3389/fnins.2018.00368

6. Grootswagers T, Wardle SG, Carlson TA
(2017) Decoding dynamic brain patterns
from evoked responses: a tutorial on multivari-
ate pattern analysis applied to time series neu-
roimaging data. J Cogn Neurosci 29
(4):677–697. https://doi.org/10.1162/
jocn_a_01068

7. van Driel J, Olivers CNL, Fahrenfort JJ (2019)
High-pass filtering artifacts in multivariate clas-
sification of neural time series data. bioRxiv.
https://doi.org/10.1101/530220

8. VanRullen R (2011) Four common conceptual
fallacies in mapping the time course of recogni-
tion. Front Psychol 2:365. https://doi.org/
10.3389/fpsyg.2011.00365

9. Maris E, Oostenveld R (2007) Nonparametric
statistical testing of EEG- and MEG-data. J
Neurosci Methods 164(1):177–190. https://
doi.org/10.1016/J.Jneumeth.2007.03.024

10. Sassenhagen J, Draschkow D (2019) Cluster-
based permutation tests of MEG/EEG data do
not establish significance of effect latency or
location. Psychophysiology 35(2):e13335.
https://doi.org/10.1111/psyp.13335

11. Kiesel A, Miller J, Jolicoeur P, Brisson B (2008)
Measurement of ERP latency differences: a
comparison of single-participant and
jackknife-based scoring methods. Psychophysi-
ology 45(2):250–274. https://doi.org/10.
1111/j.1469-8986.2007.00618.x

12. Luck SJ (2014) An introduction to the event-
related potential technique. MIT Press, Cam-
bridge, MA. https://doi.org/10.1086/
506120

13. Liesefeld HR (2018) Estimating the timing of
cognitive operations with MEG/EEG latency
measures: a primer, a brief tutorial, and an
implementation of various methods. Front
Neurosci 12:765. https://doi.org/10.3389/
fnins.2018.00765

14. King JR, Dehaene S (2014) Characterizing the
dynamics of mental representations: the tem-
poral generalization method. Trends Cogn Sci
18(4):203–210. https://doi.org/10.1016/j.
tics.2014.01.002

15. Allefeld C, Görgen K, Haynes J-D (2016) Valid
population inference for information-based
imaging: from the second-level t-test to preva-
lence inference. Neuroimage 141:378–392.
https://doi.org/10.1016/j.neuroimage.
2016.07.040

16. Hand DJ, Till RJ (2001) A simple generalisa-
tion of the area under the ROC curve for mul-
tiple class classification problems. Mach Learn
45(2):171–186. https://doi.org/10.1023/
A:1010920819831

17. Miller J, Patterson T, Ulrich R (1998)
Jackknife-based method for measuring LRP
onset latency differences. Psychophysiology
35(1):99–115

18. Ulrich R, Miller J (2001) Using the jackknife-
based scoring method for measuring LRP
onset effects in factorial designs. Psychophysi-
ology 38(5):816–827. https://doi.org/10.
1111/1469-8986.3850816

19. Haufe S, Meinecke F, Goergen K, Daehne S,
Haynes J-D, Blankertz B, Biessgmann F
(2014) On the interpretation of weight vectors
of linear models in multivariate neuroimaging.
Neuroimage 87:96–110. https://doi.org/10.
1016/j.neuroimage.2013.10.067

20. Brouwer GJ, Heeger DJ (2009) Decoding and
reconstructing color from responses in human
visual cortex. J Neurosci 29
(44):13992–14003. https://doi.org/10.
1523/JNEUROSCI.3577-09.2009

21. Garcia JO, Srinivasan R, Serences JT (2013)
Near-real-time feature-selective modulations
in human cortex. Curr Biol 23(6):515–522.
https://doi.org/10.1016/j.cub.2013.02.013

22. Ester EF, Sprague TC, Serences JT (2015)
Parietal and frontal cortex encode stimulus-
specific mnemonic representations during

Multivariate Analysis of Attentional Selection 155

https://doi.org/10.1016/0013-4694(96)95711-9
https://doi.org/10.1016/0013-4694(96)95711-9
https://doi.org/10.3758/APP.72.8.2031
https://doi.org/10.3758/APP.72.8.2031
https://doi.org/10.1038/s41598-017-01911-0
https://doi.org/10.1038/s41598-017-01911-0
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1101/530220
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.1016/J.Jneumeth.2007.03.024
https://doi.org/10.1016/J.Jneumeth.2007.03.024
https://doi.org/10.1111/psyp.13335
https://doi.org/10.1111/j.1469-8986.2007.00618.x
https://doi.org/10.1111/j.1469-8986.2007.00618.x
https://doi.org/10.1086/506120
https://doi.org/10.1086/506120
https://doi.org/10.3389/fnins.2018.00765
https://doi.org/10.3389/fnins.2018.00765
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1016/j.neuroimage.2016.07.040
https://doi.org/10.1016/j.neuroimage.2016.07.040
https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1111/1469-8986.3850816
https://doi.org/10.1111/1469-8986.3850816
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1523/JNEUROSCI.3577-09.2009
https://doi.org/10.1523/JNEUROSCI.3577-09.2009
https://doi.org/10.1016/j.cub.2013.02.013

visual working memory. Neuron 87
(4):893–905. https://doi.org/10.1016/j.neu
ron.2015.07.013

23. Foster JJ, Sutterer DW, Serences JT, Vogel EK,
Awh E (2017) Alpha-band oscillations enable
spatially and temporally resolved tracking of
covert spatial attention. Psychol Sci 28
(7):929–941. https://doi.org/10.1177/
0956797617699167

24. Foster JJ, Sutterer DW, Serences JT, Vogel EK,
Awh E (2016) The topography of alpha-band
activity tracks the content of spatial working
memory. J Neurophysiol 115(1):168–177.
https://doi.org/10.1152/jn.00860.2015

25. Samaha J, Sprague TC, Postle BR (2016)
Decoding and reconstructing the focus of spa-
tial attention from the topography of alpha-
band oscillations. J Cogn Neurosci 28
(8):1090–1097. https://doi.org/10.1162/
jocn_a_00955

26. Gardner JL, Liu T (2019) Inverted encoding
models reconstruct an arbitrary model
response, not the stimulus. eNeuro 6(2). pii:
ENEURO.0363-18.2019. https://doi.org/
10.1523/ENEURO.0363-18.2019

27. Liu T, Cable D, Gardner JL (2018) Inverted
encoding models of human population response
conflate noise and neural tuning width. J Neu-
rosci 38(2):398–408. https://doi.org/10.
1523/JNEUROSCI.2453-17.2017

28. Sprague TC, Adam KCS, Foster JJ,
Rahmati M, Sutterer DW, Vo VA (2018)
Inverted encoding models assay population-
level stimulus representations, not single-unit
neural tuning. eNeuro 5(3). pii:
ENEURO.0098-18.2018. https://doi.org/
10.1523/eneuro.0098-18.2018

29. Hubel DH, Wiesel TN (1962) Receptive fields,
binocular interaction and functional architecture
in the cat’s visual cortex. J Physiol 160:106–154

156 Johannes Jacobus Fahrenfort

https://doi.org/10.1016/j.neuron.2015.07.013
https://doi.org/10.1016/j.neuron.2015.07.013
https://doi.org/10.1177/0956797617699167
https://doi.org/10.1177/0956797617699167
https://doi.org/10.1152/jn.00860.2015
https://doi.org/10.1162/jocn_a_00955
https://doi.org/10.1162/jocn_a_00955
https://doi.org/10.1523/ENEURO.0363-18.2019
https://doi.org/10.1523/ENEURO.0363-18.2019
https://doi.org/10.1523/JNEUROSCI.2453-17.2017
https://doi.org/10.1523/JNEUROSCI.2453-17.2017
https://doi.org/10.1523/eneuro.0098-18.2018
https://doi.org/10.1523/eneuro.0098-18.2018

	Multivariate Methods to Track the Spatiotemporal Profile of Feature-Based Attentional Selection Using EEG
	1 Introduction
	2 Characterizing Attentional Selection Using the N2pc and Multivariate Classification (MVPA)
	3 Characterizing the N2pc Using Forward Encoding
	4 Conclusion
	References

