
	 -	1	-	

Practical: MVPA using the ADAM toolbox
By	Johannes	Fahrenfort	
	
In	this	practical	you	will	learn	how	to:	

1. Work	with	the	ADAM	toolbox,	learn	how	to	plot	and	compare	ERP	and	
MVPA	results	from	of	EEG	and	MEG	data	

2. Perform	a	group-level	decoding	analysis	on	EEG	data,	both	for	raw	EEG	
data	and	for	time	frequency	data	(TFR)	

3. Learn	how	to	plot	and	interpret	temporal	generalization	matrices	
4. Compute	a	single	subject	(first-level)	decoding	analysis	on	EEG	data	
5. Compute	a	single-subject	(first-level)	analysis	of	TFR	data	and	play	

around	with	the	scripts/data	
	

Install the required toolboxes (including the ADAM toolbox)
To	be	able	to	work	with	the	ADAM	toolbox,	you	have	to	have	a	working	version	
of	EEGLAB,	FieldTrip	and	ADAM	on	Matlab.	Follow	the	instructions	below:		
	
STEP 1:
For	this	practical,	we	created	an	easy	to	download	file	which	contains	all	
required	toolboxes,	here	is	the	link:	
https://www.dropbox.com/s/h64mu9m6xv6vnwl/matlab_toolboxes.zip?dl=1	
	
This	file	might	be	too	large	to	fit	on	your	account	if	you	are	not	working	on	your	
own	laptop.	If	you	run	into	memory	issues	the	teacher	has	a	USB	stick	containing	
all	the	required	files	which	you	can	use	without	having	to	download.	
		
You	can	also	download	each	of	the	toolboxes	separately	from	the	source	links	
(below),	but	it	is	probably	easier	to	just	use	the	zip	file	from	the	linked	zip	file	
above	as	this	contains	everything	you	need	in	a	single	download:	
• FieldTrip,	we	tested	using:	

ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/fieldtrip-20170711.zip	
• A	recent	release	of	EEGLAB,	we	tested	using:	

ftp://sccn.ucsd.edu/pub/daily/eeglab14_1_1b.zip	
• The	latest	version	of	the	ADAM	toolbox:	

https://github.com/fahrenfort/ADAM/archive/master.zip	
	
If	you	already	had	a	previous	version	of	ADAM	installed,	please	replace	it	
with	the	latest	version	that	you	can	download	from	the	link	above.	
	
	

	 -	2	-	

STEP 2:
Unzip	the	file(s)	you	just	downloaded,	which	should	create	a	folder	called	
'matlab_toolboxes'	containing	all	three	toolboxes,	and	should	have	the	following	
organization:	
	

		
	
You	can	put	this	folder	anywhere	you	want	(e.g.	'C:\matlab_toolboxes'	on	
Windows	PC,	or	'/Users/JJF/matlab_toolboxes'	on	a	Mac),	as	long	as	you	know	
where	you	put	it.		
	
STEP 3:
Next,	we	need	to	make	sure	that	Matlab	knows	how	to	find	the	toolboxes.	Go	into	
the	'matlab_toolboxes'	folder	above,	and	then	into	the	folder	of	the	ADAM	
toolbox	and	finally	the	'install'	directory.	Here	you	will	find	a	startup.m	file.	
Open	this	file	by	double	clicking	on	it.	You	should	see	something	like:	
	
%------------------------ toolboxes ------------------------%
% path definitions
ft_path = 'C:\matlab_toolboxes\fieldtrip-20170704';
eeglab_path = 'C:\matlab_toolboxes\eeglab14_1_1b';
adam_path = 'C:\matlab_toolboxes\ADAM-master';

	
Now	replace	those	paths	to	point	to	the	three	toolboxes	from	step	2.	
If	you	already	have	EEGLAB	(and/or	FieldTrip)	you	can	also	point	to	their	
existing	locations	on	your	computer.		

STEP 4
Once	you	have	correctly	specified	the	folder	paths	to	all	three	toolboxes,	run	
startup.m	by	clicking	on	the	green	'Run'	icon	 	in	your	toolbar	(at	the	top	of	
your	Matlab	window,	Editor	tab).	If	all	goes	well,	you	should	see:	
	
FIELDTRIP IS ALIVE
EEGLAB IS ALIVE
ADAM IS ALIVE
	
In	the	Command	Window	(along	with	some	other	messages),	after	which	you	
should	be	able	to	run	all	aspects	of	the	tutorial.	For	the	most	part,	the	tutorial	
relies	only	on	the	ADAM	toolbox,	only	the	first	level	(single	subject)	analyses	
require	EEGLAB	and/or	FieldTrip.	
	

	 -	3	-	

NOTE:
After	you	ran	startup.m,	Matlab	should	now	be	able	to	find	all	the	required	
functions	by	setting	paths	to	the	toolboxes.	However,	these	path	settings	are	lost	
when	you	close	Matlab.	For	now,	this	is	not	a	problem,	because	this	is	only	one	
practical.	However,	if	you	would	want	Matlab	to	always	be	able	to	find	the	
toolboxes,	you	should	replace	Matlab's	default	startup.m	on	your	computer	
with	the	one	you	just	modified.	You	can	find	the	default	startup.m	file	by	
typing	userpath	in	the	Matlab	command	window.	This	returns	the	location	of	
the	default	startup.m	file	that	Matlab	runs	when	you	start	Matlab.	When	you	
replace	this	startup.m	with	the	one	above,	it	will	be	executed	every	time	you	
run	Matlab.	If	for	whatever	reason	you	run	into	path	conflicts	and	want	to	reset	
the	search	paths	to	their	defaults,	you	can	type	restoredefaultpath	in	your	
command	window,	but	note	that	you	will	lose	all	existing	paths	in	your	settings.	
	

PART I: Working with the ADAM toolbox
The	next	thing	you	have	to	download	is	the	actual	data	and	results	that	you	will	
be	working	with	during	this	practical.	These	you	can	find	here:		
https://www.dropbox.com/s/9pgaxlv91f75oo5/practical_data.zip?dl=1	
Note	that	this	is	a	rather	large	data	file	(~3.1	GB).	It	may	not	fit	on	your	network	
drive,	e.g.	if	you	are	not	using	your	own	laptop	but	one	of	the	computers	from	the	
practical	room.	Try	to	save	it	locally,	i.e.	C:\	drive.	If	you	cannot	save	to	C:\	due	to	
IT	restrictions	or	lack	of	disk	space,	please	ask	the	teacher	for	a	USB	stick	to	
work	from.		
	
After	successful	unzip,	the	folder	structure	should	be	something	as	follows:	
	

	
	
This	is	the	way	in	which	your	data/scripts/results	are	best	organized	when	using	
the	ADAM	toolbox.	The	DATA_preproc	folder	contains	the	pre-processed	and	
epoched	data	(see	EEGLAB	or	FieldTrip	manual	and/or	previous	lecture).	To	
save	space,	this	folder	only	contains	the	EEG	and	MEG	data	from	the	first	subject,	

	 -	4	-	

but	the	results	do	contain	analyses	from	all	subjects.	Note	that	here,	these	are	
.mat	files	that	contain	the	data	in	FieldTrip	format,	but	you	also	put	standard	
EEGLAB	files	here	(.set/.fdt	pairs),	the	ADAM	toolbox	is	able	to	analyze	
those	too,	as	long	as	they	are	epoched	(segmented).	You	can	look	around	in	the	
folders	to	see	what	they	contain.		
	
The	RESULTS	folder	contains	the	outcome	of	specific	analyses	that	you	run,	for	
example	when	classifying	from	the	EEG	whether	subjects	are	viewing	faces	or	
scrambled	faces,	or	when	classifying	whether	they	were	viewing	famous	faces	or	
nonfamous	faces.	Because	it	is	too	time	consuming	to	run	these	decoding	
analyses	within	the	timeslot	of	the	practical,	we	have	already	done	this	for	you	
for	all	subjects.	However,	you	will	also	learn	how	to	do	this	for	a	single	subject.	
	
The	SCRIPTS	folder	contains	the	custom	scripts	used	to	analyze	and	plot	the	
data.	These	scripts	all	start	with	run_ so	that	it	is	easy	to	recognize	that	these	
scripts	were	used	to	run	analyses.	This	folder	contains	a	couple	of	files.	I	use	the	
the	keyword	‘RAW’	to	indicate	that	the	file	contains	a	script	to	perform	a	
decoding	analysis	of	raw	EEG	data	(so	without	performing	time-frequency	
analysis).	I	use	TFR	to	indicate	that	it	performs	a	decoding	analysis	on	time-
frequency	data.	I	use	the	keyword	‘firstlevels'	this	means	that	the	script	performs	
an	analysis	on	all	the	single	subjects.	The	scripts	in	the	SCRIPTS	folder	were	used	
to	run	the	analyses	that	you	see	in	the	RESULTS	folder.	You	do	not	have	to	
inspect	them	now,	but	you	can	have	a	look	at	them	in	a	later	stage	to	find	out	
how	to	script	these	analyses.	This	folder	also	contains	a	file	called	
run_practical.m.	In	this	practical,	we	are	going	to	work	from	this	file.		
	
But	before	we	start,	some	more	quick	background	information	about	how	the	
ADAM	toolbox	works.	The	toolbox	has	a	couple	of	main	functions	that	it	uses.	All	
user	functions	start	with	the	prefix	adam_ so	they	are	easily	recognized.	In	part	
I	of	this	practical,	we	are	going	to	be	doing	a	group	analysis.	The	single	subject	
(also	called	first-level)	analyses	have	already	been	performed	and	are	contained	
in	the	RESULTS	folder.	In	this	part	of	the	practical	you	will	mostly	be	using	three	
functions:	
	

	
	
The	ADAM	functions	generally	use	a	syntax	like	this: 	
	
result = adam_function_name(cfg,	filepath_or_data_variable);
	
filepath_or_variable	contains	the	path	to	the	data	or	a	variable	name	containing	
the	data,	while	cfg	(short	for	configuration)	is	a	struct	that	contains	the	
parameters	that	specify	how	to	run	the	analysis.		The	idea	to	put	these	
parameters	in	a	struct	was	borrowed	from	the	FieldTrip	toolbox,	but	ADAM	is	
not	FieldTrip.	You	will	see	how	to	use	the	cfg	struct	once	you	start	working	
through	the	run_practical.m	script	file.		

	 -	5	-	

	
The	adam_compute_group	functions	read	the	results	from	individual	subject	
analyses	that	are	contained	in	the	RESULTS	folder.	They	perform	a	group	
analysis	on	these	data	and	return	a	stats	struct	that	contains	the	outcome	of	the	
group	analysis.	This	stats	struct	can	also	be	an	array	of	structs	(multiple	
analyses),	which	can	be	input	into	adam_plot_MVPA.m for	visualizing.	
	
Open	the	run_practical.m	file.	The	file	contains	‘cells’	that	highlighted	in	
yellow	when	you	put	your	cursor	inside	them.	All	code	in	a	highlighted	cell	
(yellow	area)	will	execute	when	press	CTRL+Enter	(PC)	or	CMD(⌘)+Enter	
(Mac).	Go	through	the	run_practical.m		script	cell	by	cell.	Read	all	text	
carefully,	make	sure	you	understand	how	the	cfg	structure	is	created,	and	what	
parameter	settings	are	are	contained	in	cfg.	
	
Once	you	have	finished	PART	I	and	II,	return	to	this	document	
	

PART II: TEMPORAL GENERALIZATION, Summary
	
Only	have	a	look	at	the	results	below	after	you	have	finished	part	II.	Below	is	a	
summary	of	these	results,	pointing	out	the	things	you	should	have	noticed	when	
you	went	through	part	II	of	the	practical.	
	

	
	
The	top	row	contains	the	EEG	results,	the	bottom	row	are	the	MEG	results.	What	
you	should	have	concluded	from	this	graph	is	that	EEG	in	this	task	produced	
stronger	decoding	accuracy	(especially	early	on),	but	that	MEG	produced	more	
stable	representations	(as	you	can	also	see	in	the	FAMOUS	vs	NONFAMOUS	
comparison).	
	

EEG FAM VS SCRAMBLED

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60 EEG UNFAM VS SCRAMBLED

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60 EEG FAM VS UNFAMILIAR

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60

MEG FAM VS SCRAMBLED

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60 MEG UNFAM VS SCRAMBLED

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60 MEG FAM VS UNFAMILIAR

testing time in ms
-500 0 500 1000

tra
in

in
g

tim
e

in
 m

s

-500

0

500

1000

0.40
0.43
0.45
0.47
chance
0.53
0.55
0.57
0.60

	 -	6	-	

Next,	you	looked	at	what	happened	when	you	selected	a	limited	window	of	data	
on	which	the	classifier	was	trained,	to	inspect	how	well	this	window	generalized	
to	other	time	points.	You	can	see	what	this	looked	like	below:	

	
As	you	can	see,	when	training	on	the	200-300	ms	interval	and	testing	on	all	other	
time	points,	EEG	shows	an	early	peak	that	quickly	levels	off,	whereas	MEG	shows	
a	stable	/	less	variable	signal	over	time.	This	confirms	what	we	already	
suspected	based	on	the	temporal	generalization	plots.	Before	you	continue	on	to	
part	III	in	Matlab,	first	read	the	short	explanation	about	setting	up	first	level	
analyses	below.	
	

PART III: first level analysis
	
For	first	level	(single	subject)	analyses,	there	is	only	one	core	user	function:	

	
Allows	you	to	run	a	complete	first	level	analysis	(compute	all	single	subject	
results)	using	one	line	of	code,	in	combination	with	a	cfg	variable	to	specify	the	
parameters	of	the	analysis.	First,	you	need	to	specify	the	subjects	that	you	want	
to	analyze,	like	below	(here	only	the	first	6	subjects	for	illustration	purposes):	
	
filenames = {
 'S01_ds000117_EEG' 'S01_ds000117_MEG_grad' ...
 'S02_ds000117_EEG' 'S02_ds000117_MEG_grad' ...
 'S03_ds000117_EEG' 'S03_ds000117_MEG_grad' ...
 'S04_ds000117_EEG' 'S04_ds000117_MEG_grad' ...
 'S05_ds000117_EEG' 'S05_ds000117_MEG_grad' ...
 'S06_ds000117_EEG' 'S06_ds000117_MEG_grad' ...
};
eeg_filenames = file_list_restrict(filenames,'EEG'); % restricts to only the EEG files
meg_filenames = file_list_restrict(filenames,'MEG'); % restricts to only the MEG files

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
EEG FAM VS SCRAMBLED

 p < 0.05 (cluster based, 2-sided)

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
EEG NONFAM VS SCRAMBLED

 p < 0.05 (cluster based, 2-sided)

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
EEG FAM VS NONFAMOUS

 p < 0.05 (cluster based, 2-sided)

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
MEG FAM VS SCRAMBLED

 p < 0.05 (cluster based, 2-sided)

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
MEG NONFAM VS SCRAMBLED

 p < 0.05 (cluster based, 2-sided)

test time in ms
-500 0 500 1000

AU
C

0.48

chance

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
MEG FAM VS NONFAMOUS

 p < 0.05 (cluster based, 2-sided)

	 -	7	-	

The	function	file_list_restrict	is	a	simple	function	that	allows	you	to	
select	files	from	your	full	file	list	based	on	a	part	of	the	file	name.	This	can	be	
useful	in	cases	like	this,	where	you	have	separate	EEG	and	MEG	files,	or	when	
you	have	files	coming	from	different	experimental	sessions	etc.	You	can	now	
enter	these	file	names	into	the	cfg	struct	like	this:	
	
cfg.filenames = eeg_filenames;

	
As	mentioned	before,	these	files	can	either	be	in	EEGLAB	format	(as	long	as	the	
data	is	epoched)	or	FieldTrip	format	(you	can	use	a	struct	with	arbitrary	name,	
either	generic	or	timelock	format	that	is	saved	inside	a	.mat	file).	You	should	not	
add	an	extension	to	the	file	name,	ADAM	will	first	look	for	a	file	that	ends	in	.set,	
and	if	it	canot	find	that	it	will	look	for	a	file	that	ends	in	.mat.	The	path	to	the	files	
can	be	defined	in	the	cfg	using:	
	
cfg.datadir = 'C:\practical_data\DATA_preproc';

	
Next,	you	also	need	to	define	the	classes	that	you	want	to	perform	classification	
on	(the	conditions	that	you	want	to	compare).	Many	experiments	use	factorial	
designs.	For	the	current	experiment,	the	factorial	design	looked	like	this:	
	

	
	
The	numbers	you	see	in	the	table	are	the	event	codes	that	were	used	in	the	
experiment	to	denote	the	various	conditions.	It	is	good	practice	to	start	your	
script	by	defining	all	the	event	codes	in	the	experiment,	using	code	like	below:	
	
% event specifications: stimulus type
famous_faces = [5 6 7]; % specifies ALL famous faces
nonfamous_faces = [13 14 15]; % specifies ALL nonfamous faces
scrambled_faces = [17 18 19]; % specifies ALL scrambled faces

% event specification: repetition type
first_presentation = [5 13 17]; % specifies ALL initial presentations
immediate_repeat = [6 14 18]; % specifies ALL immediate repeats
delayed_repeat = [7 15 19]; % specifies ALL delayed repeats
		
Next,	you	can	easily	set	up	an	analysis	using	these	event	code	specifications,	
without	making	silly	errors	that	mess	up	your	analysis.	For	example,	to	classify	
all	famous	faces	against	all	nonfamous	faces,	you	would	write:	

cfg.class_spec{1} = cond_string(famous_faces);
cfg.class_spec{2} = cond_string(nonfamous_faces);	
	

	 -	8	-	

cond_string	is	an	ADAM	function	that	creates	strings	from	event	code	
specifications,	because	ADAM	requires	class	specifications	to	be	strings.	Thus,	
the	above	class	definition	is	effectively	the	same	as:	
	
cfg.class_spec{1} = '5,6,7';
cfg.class_spec{2} = '13,14,15';

	
Next,	when	you	pass	the	above	cfg	to	adam_MVPA_firstlevel,	it	will	classify	
the	activity	across	the	64	electrodes	for	each	train-test	sample	in	a	trial	as	either	
coming	from	a	famous	face	or	from	an	nonfamous	face,	and	compute	average	
classification	accuracy	for	each	of	these	samples.	You	can	run	
adam_MVPA_firstlevel using:	
	
adam_MVPA_firstlevel(cfg);	
	
ADAM	forces	you	to	think	about	whether	your	design	is	balanced,	as	it	
automatically	enforces	event	balancing	and	class	balancing	during	first	level	
analysis.	Note	that	ADAM	currently	enforces	event	balancing	within	stimulus	
classes	by	undersampling	(throwing	out	trials).	For	example,	if	an	analysis	uses	
first	presentations,	immediate	repeats	and	delayed	repeats	of	famous	faces	to	
define	the	'famous	faces'	class,	and	if	there	are	300	first	presentations	of	famous	
faces,	but	only	50	immediate	repeats	and	50	delayed	repeats,	ADAM	lowers	the	
trial	count	of	the	first	presentations	to	match	with	the	others	(so	the	300	first	
presentations	of	famous	faces	would	be	lowered	by	randomly	selecting	50	of	
those,	to	match	with	the	immediate	repeats	and	delayed	repeats	of	famous	
faces).	Between	classes,	ADAM	applies	oversampling.	So	if	your	analyses	decodes	
famous	faces	versus	scrambled	faces,	but	there	are	only	100	famous	faces,	but	
300	scrambled	faces,	ADAM	synthetically	generates	another	200	famous	faces	in	
the	training	set	so	that	the	training	set	is	fully	balanced.	See	the	slides	about	
balancing	of	today’s	lecture	if	it	is	unclear	why	ADAM	balances	event	codes	
within	and	between	classes	by	design.	To	keep	things	simple,	we	did	not	analyze	
the	immediate	repeat	and	delayed	repeat	in	the	analyses	we	ran	for	you.	We	only	
used	the	‘first	presentation’	of	each	stimulus	type	for	analysis	(codes	5,	13	and	
17).	This	can	be	done	by	specifying:	

cfg.class_spec{1} = cond_string(famous_faces,first_presentation);
cfg.class_spec{2} = cond_string(nonfamous_faces,first_presentation);	
	
cond_string	will	now	take	only	vales	that	belong	to	both	event	code	
specifications,	so	in	this	case	the	above	is	equivalent	to:	
	
cfg.class_spec{1} = '5';
cfg.class_spec{2} = '13';

	
It	is	also	possible	to	define	different	event	codes	for	training	and	testing	by	
separating	them	using	a	semicolon.	For	example,	to	train	on	first	repeats,	but	test	
on	second	repeats	use:	
	
cfg.class_spec{1} = ...
cond_string(famous_faces,first_presentation,';',famous_faces,immediate_repeat);
cfg.class_spec{2} = ...
cond_string(nonfamous_faces,first_presentation,';',nonfamous_faces,immediate_repeat);

	

	 -	9	-	

Note	that	you	have	to	put	quotation	marks	around	the	semi-colon	because	ADAM	
takes	strings	as	event	code	definitions,	and	this	is	how	the	cond_string	is	able	to	
tell	apart	the	training	and	testing	event	codes.	In	fact,	the	above	is	equivalent	to:	
	
cfg.class_spec{1} = '6;7’;
cfg.class_spec{2} = '14;15';
	
Do	you	understand	what	happens	if	you	train	on	one	type	of	stimulus	and	
test	on	another?	
	
OK,	that	is	all	you	need	to	know	about	class	specifications	in	ADAM.	Now	go	
through	part	III,	IV	and	V	of	run_practical	Good	luck!	
	
	

