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Course overview

¢ Day 2 (advanced)
» lecture |: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
» lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

» Afternoon: practical, analyze your own data and/or a supplied dataset



L ecture |

® Ways to map brain to brain, or brain to behavior



lType | and Type |l errors

o Type | error is the incorrect rejection of a true null hypothesis
(also known as a "false positive” finding)

® Type Il error is incorrectly retaining a false null hypothesis (also
known as a "false negative" finding)



The multiple comparisons
problem (MCP)

I L

.,




The multiple comparisons
problem (MCP)

® Statistical tests return the probability of the observed
data under the null-hypothesis (no effect).

gl |

e Often people use a threshold of 0.05, meaning that | in 20
tests will be significant even when there is no actual effect

® For | second of EEG (one ERP), recorded in 64 electrodes at
512 Hz, we compute 64 * 512 = 32768 statistical tests

® This means that even without an effect, 32768 * 0.05 =
1638 tests are going to be significant because of
normal random variation (Type | false positives)

® How to tell which tests are significant by chance, and which
tests are significant because of a real experimental effect?

® This is called the multiple comparisons problem



Solutions ()

¢ Bonferroni correction: divide your
statistical threshold by the number of

statistical tests you want to perform,
e.g.P=0.05/32768 = 0.0000015

® The chance that even a single test
among all these tests is spuriously
significant under this threshold is

32768 * 0.0000015 = 0.05

® Bonferroni correction in EEG research is
usually considered overly conservative



Solutions (2)

® Restricting the number of comparisons by pre-
selecting time windows and/or electrodes of interest

® Jo prevent double-dipping, selection has to be based
on independent data (e.g. on the literature or on a

split-half procedure) \
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Solutions (3)

e in Cluster based permutation-
testing the test statistic is based on
clusters rather than on individual samples

® |t computes the probability that a cluster of
the observed size occurs by chance

® P-values refer to significance of clusters, not
to significance of individual samples



training time

testing time

PERMUTE

q_ﬂ r<.0o5

N.S.

COUNTER P-vals

1: 0 0.009
2: 855 0.455
3: 863 0.763
4: 097 0.897
5: 897 0.897
6: 097 0.897
... N = 1000

Cluster-based permutation

OBSERVED

RECIPE

.
2.

Perform statistical tests for all samples
Determine the clusters (temporally or
spatially contiguous significant samples)
using some threshold (e.g. P<.05), and
give each a number
Count the size of each of the
observed clusters
(Cl=11,C2=3,C3 =2,etc.)
Create a counter for each of the
clusters
Repeat the following for n iterations:
* Permute the labels of the conditions
* Re-compute all tests
* Determine the size of the largest
cluster
* Increase the counters of all
observed clusters for which this
permuted cluster is larger
Divide all counters by n.These are the
P-values for your clusters.



Hypothetical outcome
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Solutions (4)

e The FDR (False Discovery Rate) controls
the expected proportion of incorrectly rejected
null hypotheses ("false positives")

® The FDR determines a cutoff P-value under which
no more than a set percentage of tests q (q is
usually 5%) is likely to reflect spurious false
positives

® Procedure: the P-values are ordered from large to
small, a cut-off is determined under which q = 5%


http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Null_hypothesis

False Discovery Rate (FDR)

list of P-values (10 tests)
0.6892 0.0794 0.1656 0.0311 0.7482 0.0162 0.2630 0.6020 0.5285 0.6541

sorted P-values
0.0162 0.0311 0.0794 0.1656 0.2630 0.5285 0.6020 0.6541 0.6892 0.7482

threshold P-values = false discovery rate q (usually .05) # (index_of_test/nr_of_tests) =

(1/10)*.05 (2/10)*.05 (3/10)*.05 (4/10)*.05 (5/10)~.05 (6/10)*.05 (7/10)*.05 (8/10)*.05 (9/10)*.05
0.0050 /0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450

Bonferroni correction Uncorrected

Find the first sorted P-value that is smaller than or equal to the threshold P-value =
sorted P-values <= threshold P-values

sorted P-values 0.0162 0.0311 0.0794 0.1656 0.2630 0.5285 0.6020 0.6541 0.6892 0.7482
threshold P-vals 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

XXXXXXXXXX




False Discovery Rate (FDR)

list of P-values (10 tests)
0.0794 0.6020 0.0002 0.6892 0.6541 0.1656 0.7482 0.2630 0.5285 0.0311

threshold P-values = false discovery rate q (usually .05) * (index_of_test/nr_of_tests) =

(1/10)*.05 (2/10)*.05 (3/10)*.05 (4/10)*.05 (5/10)*.05 (6/10)*.05 (7/10)*.05 (8/10)*.05 (9/10)*.05 (10/10)*.05
0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

Kv Bonferroni correction Uncorrected <J

Find the first sorted P-value that is smaller than or equal to the threshold P-value =
sorted P-values <= threshold P-values

sorted P-values (0.0002 0.0311 0.0794 0.1656 0.2630 0.5285 0.6020 0.6541 0.6892 0.7482
threshold P-vals 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

VXXXXXXXXX




False Discovery Rate (FDR)

list of P-values (10 tests)
0.0285 0.0482 0.0156 0.0094 0.0130 0.0003 0.0392 0.0311 0.0320 0.0011

threshold P-values = false discovery rate q (usually .05) * (index_of_test/nr_of_tests) =

(1/10)*.05 (2/10)*.05 (3/10)*.05 (4/10)*.05 (5/10)*.05 (6/10)*.05 (7/10)*.05 (8/10)*.05 (9/10)*.05 (10/10)*.05
0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

k» Bonferroni correction Uncorrected <J

Find the first sorted P-value that is smaller than or equal to the threshold P-value =
sorted P-values <= threshold P-values

sorted P-values (0.0003 0.0011 0.0094 0.0130 0.0156 0.0285 0.0320 0.0311 0.0392 0.0482
threshold P-vals 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

AN NN



MCP corrections summary

e Bonferroni correction: reduces alpha so that the results reflect the
odds that there are no false positives among any of the
corrected significant tests (zero false positives)

e Split-half (or other selective procedures): reduce the MCP problem by
restricting the number of tests based on independent data

® Cluster-based permutation testing: restricts the number of tests by
using clusters rather than samples as the relevant unit for
which P-values are computed

® FDR correction: reduces alpha to restrict the expected number
of false positives among all the corrected significant tests to
a fixed proportion (q, usually .05)



MVPA experimental design
& confounds

® |n principle, very similar principles apply to experimental design for
regular ERPs and for decoding analyses, BUT:

» Decoding is very sensitive, so many confounds can drive above
chance classification performance

» Subject responses can drive classification performance

» If you compare different contrasts (decoding analyses), each
contrast has to have the same number of trials, same power etc.

» Having from two different classes that are collected in different
blocks or even sessions can drive classification performance



L ecture |

® MVPA experimental design: decoding-specific confounds



MVPA experimental design

® Pretty much the same as for regular EEG/MEG experiments

e BUT... the design can impact how you can/should analyze your
data, which in turn should make you think about your design

EEG experimental desigh <« > MVPA analytical approach



Confounds

e Opverfitting and related confounds can cause above chance
decoding. This is why we have k-fold cross-validation.




Confounds

» k-fold cross-validation: Works well for event-related designs,
but does not protect from confounds intrinsic to your dataset,
e.g. when you have a strongly blocked design, or if you have one
condition/class in one session and the other condition/class in
another session. Can also be problematic if you select trials
contingent on subject responses and/or if you compare different
decoding analyses based on unequal trial counts.

Session |, task | Session 2, task 2




Confounds

» A separate training set to train the classifier solves many of
these problems. Such a training set should be balanced, event
related, and not contain responses that are relevant to your
experimental conditions (often a |-back task works well).

A Examples of Kanizsa images  Examples of control images
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L ecture |

® Ways to map brain to brain, or brain to behavior



Representational Dissimilarity

body|face |body|face
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the Representational Dissimilarity Matrix
RDM = | - correlation
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Mapping information structure between
different measures and physical substrates

monkey IT face % human IT

'
human IT g 3

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008). Matching Categorical
Object Representations in Inferior Temporal Cortex of Man and Monkey. Neuron, 60(6), | 126—1141.



Mapping fMRI to EEG

> 0
* Good temporal I‘eso|utloé

* Bad spatial resolution

* Polarity unrelated to
excitation or inhibition
(ambiguous), influenced by
cortical folding

* Good spatial resolution

* Bad temporal resolution

* Sign of parameter estimate
unrelated to excitation or
inhibition (ambiguous)

* Minor inverse problem due

. zromment inverse problem to relationship BOLD-LFP
ue to neuroanatomy



Solution: compute RDMs
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Correlate RDM patterns



Matching up the spatial and the temporal
domain between fMRI and EEG

Correlate RDM patterns

03 Sl G =

101 mi 4132 ms

O
N

- Central V1
— T

Spearman’s R
o

0
-0.05

Cichy, R. M., Pantazis, D., & Oliva,A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17(3), 455—462.



Using the distance from the
decision boundary as a metric

voxel 2

voxel 2

Grootswagers,T., Cichy, R. M., & Carlson, T.A. (2018). Finding decodable information that can be
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Questions!



Course overview

¢ Day 2 (advanced)

» lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

» Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 2

® Forward encoding models (versus decoding)

® Brain Computer Interfaces (BCls)



Backward decoding versus

Forward encoding models

Backward decoding models work with discrete
stimulus classes (e.g. object categories, but classes

that are continuous can also be treated as discrete).

The model cannot make new predictions for stimuli
that were never used to train the model

Forward encoding models only make sense when
using continuous stimulus classes (e.g. position on a
circle, orientation of a bar, color etc)

Allow you to make new predictions about cortical
responses for stimuli that were never used to
create the model
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Attentional selection: N2pc

= * N2pc: ~200 ms
attentional capture
(target selection)

-- Contralateral to the target
Ipsilateral to the target

Task: search for gap [

in red item while maintaining fixation



MVPA:classify where the target is

0.66

Task: detect whether red item is digit or letter
0.62

20 ms 20 ms 0.58 |

chance
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Also for
top vs bottom!
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400

MVPA extracts any pattern from the data (does not have to be lateralized)



Experiment 2:
attention at a finer resolution!

1900 ms
10ms __—

report the red item



Or for every part of the visual field!

1900 ms
10ms __—




From a 1983 comic book
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Forward Encoding Models:
FEMs

VERY SOON, OUR IMAGE

VOCABULARY WILL BE COM-
PLETE, THEN WE CAN REVERSE |
THE PROCESS! THE COMPUTER 4
WILL BE ABLE TO'READ"THE
SUBJECT'S THOUGHTS, |
ENHANCE THEM AND 2
PROJECT THEM AS
A VISUAL IMAGE
ON THE TV
MONITOR. ..

Make new predictions for
stimuli that were never
shown!




Forward encoding models

Forward
encoding models
(continuous)

n('ka'\\{p

Continuous relationship between stimulus space and neural data
Predict neural patterns for stimuli that the model was never trained on!



Experiment 2:

1900 ms
100ms

report the red item

Fahrenfort, |. J., Grubert, A,, Olivers, C. N. L, & Eimer, M. (2017). Multivariate EEG analyses support
high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1886.



1900 ms
100 ms —

Potential target positions

8




Create eight hypothetical
position channels

. .. Position channels
Potential target positions

C1 C2 C3 C7 C8

(b}

8 1 S

2

7 2 -
3

5 3 S
o

3

5 4 Y

Pa
1 2 3 4 5 6 7 8

Target positions

The “position channels” specify the hypothesized relationship
between attended position and EEG response amplitudes



Model prediction for each

attended position

Attended position

38

1

4

Potential target positioy
I

! 4
]
\J

2

3

Predicted channel responses

Response amplitude

C1 C2 C7 C8
Position channels




Training phase

Estimate channel Observed EEG

Predicted channel responses . : "
weights patterns in training set

(D)

:5 ®

=

-

T ¢ 'Y

(D)

n

c

@)

o

3 °

Y . . . . Py .
Cl1 C2 C3 C7 C8

Position channels

Estimate weights (electrodes X channels)
Weights characterize the mapping from channel to electrode space



Channel weights from training phase

GQ %

_h 00 I\) _\ S -~ N W P+
regression amplitude (arbitrary units)



Testing phase: obtain
Channel Tuning Functions (CTFs)

Combine observed EEG with channel weights . .
. : Channel Tuning Function
patterns from testing set to estimate channel (CTF)
responses
o
7 =
=
6 % 8
)
7))
c
@)
o
O °
o o : : : : : F ®
c1 Cc2 cC3 C7 C8

‘ Position channels
Attended position

Estimate CTF for every for every attended position



CTF for each attended position

o o
BN (@]

Response amplitude
o
N

O
N

0.6

Response amplitude

-0.2

position 1

position 2

position 3

position 4

o

567812345
channel

position 5

678123456
channel

position 6

781234567
channel

position 7

812345678
channel

position 8

0.4;

0.2}

123456781
channel

234567812
channel

345678123
channel

4 56781234
channel




Average CTFs across
positions to obtain single CTF

O
o

e CTF
== Dre-stimulus baseline

-
™~

©
w

Response amplitude
o o
RN N

o

8 1 2 3 4 5 6 7 8
channel

=
—

CTF:a continuous relationship between
attended position and neural response patterns



Response amplitude

0.5

0.4}

0.3}

0.2}

0.1t

Reminiscent of neuronal
receptive field tuning functions

—CTF
== Dre-stimulus baseline
8 1 2 3 4 5 6 7 8

channel
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neurophysiology

Neuronal tuning function
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Predict locations that were never
attended when generating the model
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VERY SOON, OUR IMAGE
VOCABLLARY WILL BE COM-
PLETE, THEN WE CAN REVERSE
THE PROCESS! THE COMPUTER

WILL BE ABLE TOREAD"THE
zlrjtuANce‘sngf?\uAngs'
PROJECT THEM AS

Channel Tuning

The procedure from patterns
to CTFs is invertible!

Combine observed EEG with channel weights F : CTE
patterns from testing set to estimate channel unction ( )
responses
8 o)
o
7 =
=
6 % 8
5 &
c
o
Q.
O °
v .
C1 Cc2 C3 c7 C8

Attended position

Position channels



Response amplitude

VERY SOON, OUR IMAG
VOCABULARY WILL BE Som-
LETE, WE CAN REvERSE
WILL BE ABLE TOM'READ"
TS mouﬁugs, ‘

ENHANCE THEM
CT A AS
A VISUAL IMAGE

Construct neural patterns for
positions that were never attended

Channel weights

C2/C3 constructed CTF . . .. -~
obtained during training g 1Py
o o 2
I (1)
: 3
¢ 5 ,'bot.‘,
c1_ c24 c3 ¢ ' ' c7 c8 M
Position channels
Construct attention
at this position

Right position (between 2 and 3)
was never attended during experiment!



Construct neural patterns for
positions that were never attended

: left versus right

Top, bottom, left and
right were never
attended during the
experiment!

top versus bottom




Correspondence between prediction of
forward encoding model (FEM) and actually observed data

r=0.95, p<10™"

difference
FEM-BDM

N ........... ........... MR r=0.92, p<10?®

............

difference
FEM-BDM

Fahrenfort, |. J., Grubert, A,, Olivers, C. N. L, & Eimer, M. (2017). Multivariate EEG analyses support
high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1886.



Backward decoding models
(BDMs)

LI
. LA Backward decoding
n‘: models (discrete)
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Backward decoding models (BDMs)
Versus
Forward encoding models (FEMs)

(A ll‘l .
' models (discrate):
5 & |
& @ {}
het

Forward

encoding models 1@1 g

(continuous)




Backward decoding versus

Forward encoding models

Backward decoding models work with discrete
stimulus classes (e.g. object categories, but classes

that are continuous can also be treated as discrete).

The model cannot make new predictions for stimuli
that were never used to train the model

Forward encoding models only make sense when
using continuous stimulus classes (e.g. position on a
circle, orientation of a bar, color etc)

Allow you to make new predictions about cortical
responses for stimuli that were never used to
create the model
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What can we now do!

® Decode attention for any part of the visual field, as long as the
condition has been encoded in the experiment (BDMs)

¢ |dentify attention for positions that were not explicitly encoded
in the experiment (FEMs)



We are now using these methods to
determine whether attention is able to
operate in parallel

Task: report the identity of the blue and the yellow letter



And to characterize the effect of
spatial attention on input over time
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Brain Computer Interfaces

e Multivariate decoding/encoding approaches in EEG and MEG
are a relatively recent addition in cognitive neuroscience
(in fMRI they’ve been around for some time)

® This is quite odd, as BCls that utilize multivariate data have
been around for quite a bit longer; especially on EEG

Peters, B. O., Pfurtscheller, G., & Flyvbjerg, H. (1998). Mining multi-channel EEG for its information content: an ANN-based method
for a brain—computer interface. Neural Networks, | 1(7), 1429—1433.



Brain Computer Interfaces
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Questions!



Course overview

» Afternoon: practical, analyze your own data and/or a supplied dataset



