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Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 1

• Multiple comparison correction

• MVPA experimental design: decoding-specific confounds 

• Ways to map brain to brain, or brain to behavior



Type I and Type II errors

• Type I error is the incorrect rejection of a true null hypothesis 
(also known as a "false positive" finding)

• Type II error is incorrectly retaining a false null hypothesis (also 
known as a "false negative" finding)



The multiple comparisons 
problem (MCP)



The multiple comparisons 
problem (MCP)

• Statistical tests return the probability of the observed 
data under the null-hypothesis (no effect). 

• Often people use a threshold of 0.05, meaning that 1 in 20 
tests will be significant even when there is no actual effect

• For 1 second of EEG (one ERP), recorded in 64 electrodes at 
512 Hz, we compute 64 * 512 = 32768 statistical tests

• This means that even without an effect, 32768 * 0.05 =  
1638 tests are going to be significant because of 
normal random variation (Type I false positives)

• How to tell which tests are significant by chance, and which 
tests are significant because of a real experimental effect?

• This is called the multiple comparisons problem



Solutions (1)
• Bonferroni correction: divide your 

statistical threshold by the number of 
statistical tests you want to perform,  
e.g. P = 0.05 / 32768 = 0.0000015

• The chance that even a single test 
among all these tests is spuriously 
significant under this threshold is  
32768 * 0.0000015 = 0.05

• Bonferroni correction in EEG research is 
usually considered overly conservative



• Restricting the number of comparisons by pre-
selecting time windows and/or electrodes of interest 

• To prevent double-dipping, selection has to be based 
on independent data (e.g. on the literature or on a 
split-half procedure)

Solutions (2)
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Solutions (3)

• in Cluster based permutation-
testing the test statistic is based on 
clusters rather than on individual samples 

• It computes the probability that a cluster of 
the observed size occurs by chance

• P-values refer to significance of clusters, not 
to significance of individual samples



Cluster-based permutation

P < .05
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RECIPE
1. Perform statistical tests for all samples
2. Determine the clusters (temporally or 

spatially contiguous significant samples) 
using some threshold (e.g. P<.05), and 
give each a number

3. Count the size of each of the 
observed clusters  
(C1 = 11, C2 = 3, C3 = 2, etc.)

4. Create a counter for each of the 
clusters

5. Repeat the following for n iterations:
• Permute the labels of the conditions
• Re-compute all tests
• Determine the size of the largest 

cluster
• Increase the counters of all 

observed clusters for which this 
permuted cluster is larger 

6. Divide all counters by n. These are the 
P-values for your clusters.
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    2: 455
    3: 763
    4: 897
    5: 897
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…. n = 1000

P-vals
0.009
0.455
0.763
0.897
0.897
0.897



Hypothetical outcome

UNCORRECTED CLUSTER-BASEDBONFERRONI



• The FDR (False Discovery Rate) controls 
the expected proportion of incorrectly rejected 
null hypotheses ("false positives")

• The FDR determines a cutoff P-value under which 
no more than a set percentage of tests q (q is 
usually 5%) is likely to reflect spurious false 
positives

• Procedure: the P-values are ordered from large to 
small, a cut-off is determined under which q = 5%

Solutions (4)

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Null_hypothesis


False Discovery Rate (FDR)

0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

0.6892    0.0794    0.1656    0.0311    0.7482    0.0162    0.2630    0.6020    0.5285    0.6541

0.0162    0.0311    0.0794    0.1656    0.2630    0.5285    0.6020    0.6541    0.6892    0.7482

list of P-values (10 tests)

sorted P-values

threshold P-values = false discovery rate q (usually .05) * (index_of_test/nr_of_tests) = 

Find the first sorted P-value that is smaller than or equal to the threshold P-value = 

(1/10)*.05   (2/10)*.05   (3/10)*.05    (4/10)*.05    (5/10)*.05    (6/10)*.05    (7/10)*.05    (8/10)*.05    (9/10)*.05    (10/10)*.05 

sorted P-values <= threshold P-values

0.0162    0.0311    0.0794    0.1656    0.2630    0.5285    0.6020    0.6541    0.6892    0.7482
0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

Bonferroni correction Uncorrected

sorted P-values
threshold P-vals



False Discovery Rate (FDR)

0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

threshold P-values = false discovery rate q (usually .05) * (index_of_test/nr_of_tests) = 

Find the first sorted P-value that is smaller than or equal to the threshold P-value = 

(1/10)*.05   (2/10)*.05   (3/10)*.05    (4/10)*.05    (5/10)*.05    (6/10)*.05    (7/10)*.05    (8/10)*.05    (9/10)*.05    (10/10)*.05 

sorted P-values <= threshold P-values

0.0002    0.0311    0.0794    0.1656    0.2630    0.5285    0.6020    0.6541    0.6892    0.7482
0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

Bonferroni correction Uncorrected

sorted P-values
threshold P-vals

0.0794    0.6020    0.0002    0.6892    0.6541    0.1656    0.7482    0.2630    0.5285    0.0311

list of P-values (10 tests)



False Discovery Rate (FDR)

0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

threshold P-values = false discovery rate q (usually .05) * (index_of_test/nr_of_tests) = 

Find the first sorted P-value that is smaller than or equal to the threshold P-value = 

(1/10)*.05   (2/10)*.05   (3/10)*.05    (4/10)*.05    (5/10)*.05    (6/10)*.05    (7/10)*.05    (8/10)*.05    (9/10)*.05    (10/10)*.05 

sorted P-values <= threshold P-values

0.0003    0.0011    0.0094    0.0130    0.0156    0.0285    0.0320    0.0311    0.0392    0.0482
0.0050    0.0100    0.0150    0.0200    0.0250    0.0300    0.0350    0.0400    0.0450    0.0500

Bonferroni correction Uncorrected

sorted P-values
threshold P-vals

0.0285    0.0482    0.0156    0.0094    0.0130    0.0003    0.0392    0.0311    0.0320    0.0011

list of P-values (10 tests)



MCP corrections summary
• Bonferroni correction: reduces alpha so that the results reflect the 

odds that there are no false positives among any of the 
corrected significant tests (zero false positives)

• Split-half (or other selective procedures): reduce the MCP problem by 
restricting the number of tests based on independent data

• Cluster-based permutation testing: restricts the number of tests by 
using clusters rather than samples as the relevant unit for 
which P-values are computed

• FDR correction: reduces alpha to restrict the expected number 
of false positives among all the corrected significant tests to 
a fixed proportion (q, usually .05)



MVPA experimental design 
& confounds

• In principle, very similar principles apply to experimental design for 
regular ERPs and for decoding analyses, BUT:

‣ Decoding is very sensitive, so many confounds can drive above 
chance classification performance

‣ Subject responses can drive classification performance

‣ If you compare different contrasts (decoding analyses), each 
contrast has to have the same number of trials, same power etc.

‣ Having from two different classes that are collected in different 
blocks or even sessions can drive classification performance



Lecture 1

• Multiple comparison correction

• MVPA experimental design: decoding-specific confounds 

• Ways to map brain to brain, or brain to behavior



MVPA experimental design

• Pretty much the same as for regular EEG/MEG experiments

• BUT… the design can impact how you can/should analyze your 
data, which in turn should make you think about your design

MVPA analytical approachEEG experimental design 



Confounds

• Overfitting and related confounds can cause above chance 
decoding.  This is why we have k-fold cross-validation.

But does this solve all problems?



Confounds
‣ k-fold cross-validation: Works well for event-related designs, 

but does not protect from confounds intrinsic to your dataset, 
e.g. when you have a strongly blocked design, or if you have one 
condition/class in one session and the other condition/class in 
another session. Can also be problematic if you select trials 
contingent on subject responses and/or if you compare different 
decoding analyses based on unequal trial counts.

Session 1, task 1 Session 2, task 2



Confounds
‣ A separate training set to train the classifier solves many of 

these problems. Such a training set should be balanced, event 
related, and not contain responses that are relevant to your 
experimental conditions (often a 1-back task works well).
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Lecture 1

• Multiple comparison correction

• MVPA experimental design: decoding-specific confounds 

• Ways to map brain to brain, or brain to behavior



Representational Dissimilarity



Similarity: correlation
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the                                             Matrix
RDM = 1 - correlation

fMRI

Representational Dissimilarity



the RDM reveals the  
“information structure”

fMRIneurophysiology



Mapping information structure  between 
different measures and physical substrates

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008). Matching Categorical 
Object Representations in Inferior Temporal Cortex of Man and Monkey. Neuron, 60(6), 1126–1141.



Mapping fMRI to EEG

• Good temporal resolution
• Bad spatial resolution
• Polarity unrelated to 

excitation or inhibition 
(ambiguous), influenced by 
cortical folding

• Prominent inverse problem 
due to neuroanatomy 

• Good spatial resolution
• Bad temporal resolution
• Sign of parameter estimate 

unrelated to excitation or 
inhibition (ambiguous)

• Minor inverse problem due 
to relationship BOLD-LFP

Map
ping i
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lt!



Solution: compute RDMs
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400 ms

600 ms

800 ms

V1
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Correlate RDM patterns



Matching up the spatial and the temporal 
domain between fMRI and EEG

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17(3), 455–462.
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Using the distance from the 
decision boundary as a metric

Grootswagers, T., Cichy, R. M., & Carlson, T. A. (2018). Finding decodable information that can be 
read out in behaviour. Neuroimage, 179, 252–262.



Questions?



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1:  MVPA experimental design and various ways to map brain to brain or to behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 2

• Forward encoding models (versus decoding)

• Brain Computer Interfaces (BCIs)



• Backward decoding models work with discrete 
stimulus classes (e.g. object categories, but classes 
that are continuous can also be treated as discrete).

• The model cannot make new predictions for stimuli 
that were never used to train the model

• Forward encoding models only make sense when 
using continuous stimulus classes (e.g. position on a 
circle, orientation of a bar, color etc)

• Allow you to make  new predictions about cortical 
responses for stimuli that were never used to 
create the model

Backward decoding versus  
Forward encoding models



Attentional selection: N2pc

• N2pc: ~200 ms  
attentional capture 
(target selection)

Task: search for gap 
in red item while maintaining fixation



N2Pc

MVPA:classify where the target is

20#ms#
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Task: detect whether red item is digit or letter

RC
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MVPA extracts any pattern from the data (does not have to be lateralized)

Also for
top vs bottom!

Decodingleft versus right
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Experiment 2:  
attention at a finer resolution!

report the red item



Or for every part of the visual field!
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Forward Encoding Models: 
FEMs

Make new predictions for
stimuli that were never 

shown!



Forward  encoding models

Continuous relationship between stimulus space and neural data
Predict neural patterns for stimuli that the model was never trained on!

Forward 
encoding models

(continuous)
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Fahrenfort, J. J., Grubert, A., Olivers, C. N. L., & Eimer, M. (2017). Multivariate EEG analyses support 
high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1886.

Experiment 2: 

report the red item
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Create eight hypothetical 
position channels

The “position channels” specify the hypothesized relationship  
between attended position and EEG response amplitudes

Position channels
C1 C2 C3 C4 C5 C6 C7 C8
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Model prediction for each 
attended position

Attended position

Predicted channel responses

C1 C2 C3 C4 C5 C6 C7 C8
Position channels
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Training phase

Predicted channel responses

Weights

Estimate channel 
weights

Observed EEG
patterns in training set

Estimate weights (electrodes × channels)
Weights characterize the mapping from channel to electrode space

C1 C2 C3 C4 C5 C6 C7 C8
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Channel weights from training phase
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Testing phase: obtain  
Channel Tuning Functions (CTFs)

Weights-1

with channel weights 
to estimate channel 

responses

Attended position

Channel Tuning Function
(CTF)

Combine observed EEG
patterns from testing set

Estimate CTF for every for every attended position
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CTF for each attended position
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Average CTFs across 
positions to obtain single CTF
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CTF: a continuous relationship between 
attended position and neural response patterns 



Reminiscent of neuronal 
receptive field tuning functions

Neuronal tuning function 
for a V1 neuron
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Predict locations that were never 
attended when generating the model

?



The procedure from patterns 
to CTFs is invertible!

Weights-1

with channel weights 
to estimate channel 

responses

Attended position

Channel Tuning  
Function (CTF)

Combine observed EEG
patterns from testing set
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Construct neural patterns for 
positions that were never attended

Right position (between 2 and 3)
was never attended during experiment!

Construct attention
at this position
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C2/C3 constructed CTF
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left versus right

top versus bottom

Construct neural patterns for 
positions that were never attended

Top, bottom, left and 
right were never 

attended during the 
experiment!



Correspondence between prediction of  
forward encoding model (FEM) and actually observed data

Fahrenfort, J. J., Grubert, A., Olivers, C. N. L., & Eimer, M. (2017). Multivariate EEG analyses support 
high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1886.

exp2: FEM

A 2
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r=0.95, p<10-11 

r=0.92, p<10-9 



Backward decoding 
models (discrete)
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Backward decoding models 
(BDMs)



Backward decoding models (BDMs) 
versus  

Forward encoding models (FEMs)

Backward decoding 
models (discrete)
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• Backward decoding models work with discrete 
stimulus classes (e.g. object categories, but classes 
that are continuous can also be treated as discrete).

• The model cannot make new predictions for stimuli 
that were never used to train the model

• Forward encoding models only make sense when 
using continuous stimulus classes (e.g. position on a 
circle, orientation of a bar, color etc)

• Allow you to make  new predictions about cortical 
responses for stimuli that were never used to 
create the model

Backward decoding versus  
Forward encoding models



What can we now do?

• Decode attention for any part of the visual field, as long as the 
condition has been encoded in the experiment (BDMs)

• Identify attention for positions that were not explicitly encoded 
in the experiment (FEMs)



We are now using these methods to 
determine whether attention is able to 

operate in parallel
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Task: report the identity of the blue and the yellow letter



And to characterize the effect of 
spatial attention on input over time 

attend  
left

attend  
right

channel
8 1 2 3 4 5 6 7 8

ch
an

ne
l r

es
po

ns
e

-0.1

0

0.1

0.2

0.3

0.4

0.5
CTF



Brain Computer Interfaces

• Multivariate decoding/encoding approaches in EEG and MEG 
are a relatively recent addition in cognitive neuroscience 
(in fMRI they’ve been around for some time)

• This is quite odd, as BCIs that utilize multivariate data have 
been around for quite a bit longer, especially on EEG

Peters, B. O., Pfurtscheller, G., & Flyvbjerg, H. (1998). Mining multi-channel EEG for its information content: an ANN-based method 
for a brain–computer interface. Neural Networks, 11(7), 1429–1433.



SIGNAL
ACQUISITION

Brain Computer Interfaces

neural   signals

digitized
signal

SIGNAL PROCESSING

Classification algorithm  

Feature extraction BCI

sensory
feedback

neuroprosthesis
control

brain-controlled
typing

neurogame
control



Pong



Brain pong



Typing



Electronic Typing



Brain Typing



Prosthetic hand



Robotic hand



Brain-controlled hand



Questions?



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: BCI’s, MVPA experimental design and various ways to map brain to brain or to behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset


