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Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 1 - 
History and neurophysiology of EEG/MEG



Luigi Galvani, the father 
of electrophysiology

• Electrophysiology: the study of the 
electrical properties of biological cells 
and tissues

• Galvani discovered in the late 1780s 
that stimulating the nerves of a dead 
frog with electricity resulted in muscle 
movement

• He coined the term ‘animal electricity’ 
to describe the force that activated 
these movements



The history of 
electroencephalography (EEG)
• Gustov Fritsch and Eduard Hitzig (1870) showed that 

electrically stimulating the sensory-motor cortex of a dog 
produced movement 

• Richard Caton (1875) showed the existence of electrical 
activity in exposed rabbit brain

• On July 6, 1924, Hans Berger (after 30 years of trying) for 
the first time recorded EEG from a human subject:

EEG

10 Hz timing
First EEG ever recorded in the history of mankind



Hans Berger

• It took another 5 years (1929) before Berger dared to publish 
his results in “Uber das elektrenkephalogramm des 
Menschen”  (“On the Electroencephalogram of Man”)

• Between 1929 and 1938, Berger published 14 papers with the 
same title, distinguished from one another only numerically 
(report 1, report 2 etc)

• Many of the phenomena that Berger studied are still under 
investigation today



So what is EEG, really?



A few basic concepts
• Voltage 

‣ the potential of current to flow from one point to another. 

‣ think of it as “water pressure”. 

‣ this is a relative measure! 

•Current 

‣  number of charged particles (electrons, ions) that flow in a given time. 

‣  think of it as the volume of a “water flow”. 

• Resistance

‣ resistance to movement of charges

‣ like having a skinny or blocked hose segment 

•Ohm’s Law:  Voltage = Current * Resistance 



So what does EEG measure?

Pyramidal cells



Source of electric signal:  
cell polarization of pyramidal neurons

• Excitatory neurotransmitter 
released on dendrites causes 
positive charges to flow into 
dendrite 

• Net negative on outside of 
dendrite

• Current flows through cell, 
leading to new spiking activity

• Polarity reverses with 
inhibitory neurotransmitter 
or postsynaptic potential on 
cell body / basal dendritesspiking

LFP

Resting  
state



Spiking activity versus 
local field potential (LFP)

• Local Field Potential (LFP): the result of 
synchronized input activity of many 
dendrites into neurons 

• Action potential (spiking): the output 
activity of a neuron



EEG
Measure volt 
difference 
between 
electrode and 
reference on the 
scalp



LFPs generate dipoles

Electric dipole field Equipotential lines



Cortical fold

• Large numbers of 
neurons must have 
unidirectional 
voltage fields

• Folding can cause 
local 
cancellation



Source of EEG
• Local field potentials 

(summation of 
postsynaptic inputs)  
NOT spiking activity / 
action potentials

• Scalp-recorded potentials 
only possible for layered 
structures with consistent 
orientations, which are 
mostly cortical (not 
subcortical)



Source of EEG

• Voltages spread 
through the head 
through volume 
conduction

• Voltage everywhere 
except at negative-
positive transition

• Skull causes lateral 
spread (blurring)



Inhibition/excitation

It is impossible to know whether a positive or negative 
EEG deflection is caused by inhibition or excitation

Moreover, either of these 
neurons may receive 

excitatory/inhibitory inputs at 
dendrite/soma

Orientation of neurons with 
respect to electrode is in 

practice unknown



Three requirements for EEG

1. Many LFPs need to occur at the same time to create 
a sufficiently strong dipole (synchronous activity of 
many neurons)

2. Dipoles (and thus neurons) need to have the same 
orientation

3. Can only measure radial dipoles.  
Neurons should not be oriented in  
parallel to the cortical surface.

A lot of event-related neural activity does not meet these 
requirements; what does that mean for the interpretation of EEG?

radial
tangential



Magnetoencephalography 
(MEG)

No blurring



Magnetoencephalography 
(MEG)

Right hand grip rule

only measures magnetic fields that leave the skull, so 
cannot detect dipoles oriented perpendicular to the scalp 

(= cannot measure radial dipoles) 

radial
tangential



The MEG/EEG signal
• MEG/EEG is primarily temporal, acquired at discrete moments in time, called samples

• The temporal resolution at which these samples are acquired is called the  
sampling rate

• MEG/EEG is also spatial, acquired across a varying number of electrodes 
(in MEG and analysis software these are often called channels)

• The number of electrodes in EEG can vary from anywhere between 1 to 256 channels, 
a typical number is 64

• The signal in each of the channels can be plotted over time, as can be seen in an  
event related potential (ERP)

• The signal across channels for a particular time point can be plotted in a topographical 
map: the topomap



channels → topomap



Forward problem versus 
Inverse problem

Forward problem 
(relatively easy)

Inverse problem 
(ill-posed)



MEG/EEG analysis
• Typically MEG/EEG is pre-processed to remove artifacts

• Next, there are many potential analytical approaches:

‣ Event Related Potentials (won’t talk much about ERPs)

‣ Time-frequency representations (will talk a little about TFRs)

‣ Multivariate approaches (will mostly talk about MVPA)

• Approaches are not mutually exclusive (can be combined)

• Ultimate goal in cognitive neuroscience is to characterize brain 
activity that subserves cognition and mental life (Hans Berger!)



Analysis software
• Standard main packages:

‣ EEGLAB (user friendly, Matlab)

‣ MNE (versatile, Python)

‣ Brainstorm (Matlab, source reconstruction)

‣ Brain Vision Analyzer (BVA, proprietary expensive, click and drag GUI)

• Some more dedicated toolboxes:

‣ ERPLAB (Matlab, ERPs)

‣ FieldTrip (Matlab, TFRs)

‣ CoSMoMVPA (decoding, Matlab) 

‣ the Neural Decoding Toolbox (decoding, Matlab)

‣ the ADAM toolbox (decoding/forward encoding, Matlab)

‣ the PyMVPA toolbox (decoding, Python)



Questions?



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 2 - 
Basic concepts and procedures in MVPA

• What is MVPA (decoding)? Univariate vs Multivariate (MVPA)

• Approaches and concepts:
Train-test procedures, overfitting, K-fold cross validation, overfitting, classes, 
classifier, features, the decision boundary, weights, forward-transformed weights

• The confusion matrix, performance measures, balancing 

• Balancing: undersampling and oversampling



Franciscus Donder’s 
mental chronometry 

(1868)

• Information processing consists of stages 
(perception, decision making, response selection)

• These stage occur serially, and each of these 
stages takes time

• Through subtraction, you can determine how 
much time a process takes

‣ The first to measure reaction time in a laboratory



Subtraction

stimulus processing response?

S perception “univ.” R (RT2)

S perception “univ.” decide: left/right R (RT1)task1

task2

“decision time” decide: left/right

570 ms

350 ms

220 ms

The difference between the task RTs should tell 
us the “decision time”! 

univ.  centre 



Donders’ subtraction methodology 
(reaction times)



MVPA - what is it?

• Military Vehicle Preservation Association

• Multivoxel pattern analysis (fMRI)

• Multivariate pattern analysis (EEG and fMRI)

• Univariate versus Multivariate



Univariate analysis
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Univariate analysis
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Univariate analysis



!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

voxel#1#voxel#2#voxel#3#voxel#4#voxel#5#

condi2on#1#

condi2on#2#

Be
ta

 w
ei

gh
t

!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

average#

condi2on#1#

condi2on#2#

Be
ta

 w
ei

gh
t

Univariate analysis



But multivariate signal may 
be consistent!

condition 1 (trial 2)
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The first truly multivariate 
study in fMRI

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and 
objects in ventral temporal cortex. Science, 293(5539), 2425–2430.



The first truly multivariate 
study in fMRI

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and 
objects in ventral temporal cortex. Science, 293(5539), 2425–2430.



How to identify multivariate patterns 
(‘landscapes’)?

• Representational Similarity Analysis (RSA, correlation) or 
Representational Dissimilarity Matrices (RDMs, 1-correlation)

• Train-test algorithms (e.g. LDA, SVM) :  
- linear classifiers 
- nonlinear classifiers



Univariate versus 
Multivariate analysis

oooooo dots in graph refer to 
different observations (trials)

The decision boundary

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying 
distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270.



MVPA in EEG

• Essentially the same thing as in fMRI, now using 
electrodes rather than voxels as features

• ERPs are conceptually similar to old school univariate 
GLM analysis in fMRI

• Using MVPA, you can identify whether patterns of 
activation across the brain are different between 
conditions (even when specific ERPs would look highly 
similar)



Experiment: find a Neural Correlate of 
processing Apples and Oranges (NCAO)
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Training
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Decoding: computing classification 
performance on test data



Train-test schemes

• Your training set should always be independent from your testing 
set (never use the same data for training and for testing)

• Two ways of doing this:

‣ Use the same dataset for training and testing, while never 
training on the same data as you tested on:  
k-fold cross-validation

‣ Use two different datasets, a separate training set for 
training, and a different one for testing



K-fold cross-validation

90% train 10% test

compute  accuracy on test datacompute  accuracy on test data

Repeat until all data has been tested once 
and  compute classification performance across folds

labels

data

WHY?



Keep train and test data 
independent to prevent overfitting

Conceptually similar to double dipping
(= using the same data for data selection and statistical testing)



Why	is	it	called	K-fold	cross-valida2on?

• If k = 4, the classification will be ran 4 times, each time training on 75% of the 
data and testing on 25% of the data

• The result will be averaged across the 4 folds, thus testing all data exactly once
• If k is equal to the number of trials in your dataset, the method is called a  

leave-one-out cross-validation procedure
• Alternatively, you can collect a separate dataset for training your classifier  

(akin to a ‘mapper’ in fMRI analysis)



What do EEG decoding results look like?

‘the	classifier’

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial 
on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. Journal of Cognitive Neuroscience, 29(4), 677–697.
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k-fold cross-validation or 
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Weight matrix
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Weights
(non-interpretable)

Activation pattern
(equivalent to univariate)

Two options:
1) weights * covariance matrix = activation pattern 
2) weights * correlation matrix = class/correlation separability map 

Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D., Blankertz, B., & Biessgmann, F. (2014). On the interpretation of 
weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110.



Performance measures:  
the confusion matrix

A confusion matrix is a table that is used to describe the 
performance of a classification model (or "classifier") on a set of 
test data for which the true values are known. 

hits

correct  
rejections

misses

false 
alarms



Performance measures: 
overall accuracy

The percentage correctly classified instances across all data. Highly 
sensitive to bias (especially when classes are not balanced) 
should not be used, ever.

 60  0 

 105 0  

Accuracy = 105 / 165 = 63%!



Performance measures:
balanced accuracy

Balanced accuracy = average percentage correct for each 
class, averaged across classes

 60  0 

 105 0  

Accuracy = (0/60 + 105/105)/2 = (0 + 1)/2 = 50%



Performance measures

• Accuracy = the percentage correctly classified instances 
across all data. Highly sensitive to bias (especially when classes 
are not balanced) should not be used, ever.

• Balanced accuracy = average percentage correct for each 
class, averaged across classes

• Hit rate – False alarm rate

• d’ = Z(HR) – Z(FAR)

• AUC = Area Under the Curve 
hits

correct  
rejections

misses

false 
alarms

hit rate = 100 / 105 = .95
false alarm rate = 10/60 = 0.16

decision
boundary

SD
T
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ea
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s



Signal Detection Theory (SDT) measures:
Area Under the Curve (AUC)

P(predict_YES|actual_NO)
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0 1
Using the ‘score’ (probability)

that an instance is from a certain class
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Experimental design and 
analytical approach

• conditions versus classes

• Experimental design: the condition labels describe the cells in 
your factorial design

• Analytical approach using decoding: the stimulus classes are the 
relevant things that you are comparing when doing a decoding 
analysis (often these are the levels of a factor in your design)

Face House

Face	cue 25% 10%
House	cue 10% 25%
Neutral	cue 15% 15%



Within class imbalances

Classes: face versus house

Face House
Face	cue 25% 10% 35%
House	cue 10% 25% 35%
Neutral	cue 15% 15% 30%

50% 50% 100%

Factor	
‘stimulus	type’

Factor	
‘expectation’

Designs are often not balanced even when 
they seem to be at first glance



Within class imbalances
But the number of trials may not be balanced 
within stimulus classes

Face House
Face	cue 25% 10% 35%
House	cue 10% 25% 35%
Neutral	cue 15% 15% 30%

50% 50% 100%

Factor	
‘stimulus	type’

Factor	
‘expectation’

Correctly cued items contribute more strongly to the 
comparison than neutrally or incorrectly cued items



Within class imbalances
The ADAM toolbox automatically removes trials within 
the underrepresented conditions to keep the design 
balanced (this is called undersampling)

Face House
Face	cue 10% 10% 20%
House	cue 10% 10% 20%
Neutral	cue 10% 10% 20%

30% 30% 60%

Factor	
‘stimulus	type’

Factor	
‘expectation’



Between class imbalances
Your	design	may	also	be	unbalanced	between	
s(mulus	classes

Target Foil
Target	cue 45% 5% 50%
Neutral	cue 45% 5% 50%

90% 10% 100%

Factor	
‘stimulus	type’

Factor	
‘expectation’

Unbalanced accuracy = percentage correctly classified across all instances 
Highly sensitive to bias when classes are not balanced!



Between class imbalances
By default, ADAM balances between classes by 
duplicating/generating trials of the underrepresented 
classes in the training set (this is called oversampling)

Target Foil
Target	cue 45% 5%	*	9 50%
Neutral	cue 45% 5%	*	9 50%

50% 50% 100%

Factor	
‘stimulus	type’

Factor	
‘expectation’



Some MVPA (machine learning) lingo 

• The algorithm that is used to classify multivariate data patterns into distinct categories is called  
the classifier

• The categories (conditions) that the classifier discriminates are called classes

• The input data points used for classification are called the features. In the case of MEG/EEG, the 
channels/electrodes are usually the features.

• If a classifier is trained and tested on the same data this results in overfitting (in cognitive 
neuroscience we call this double-dipping)

• To prevent this, you either need to train and test on a different dataset, or use  
k-fold cross-validation

• After training, each feature is assigned a classifier weight, telling the classifier how useful that feature is 
to discriminate the relevant classes

• The performance of a classifier can be assessed in various ways, by making use of the  
confusion matrix

• Undersampling and oversampling can be used to keep a design balanced (preventing bias in 
classification accuracy)



Course overview
• Day 1 (introductory)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Basic concepts in MVPA

‣ lecture 3: Decoding measures and the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Using classifier scores to map brain to behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset from scratch



Questions



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 3

• Advantages of MVPA

• The temporal generalization method



What do EEG decoding results look like?

‘the	classifier’

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial 
on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. Journal of Cognitive Neuroscience, 29(4), 677–697.
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Result: a temporal signal

ERP (electrode P10) Decoding 

time in ms
-500 0 500 1000

μV
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EEG FAM VS SCRAMBLED subtraction (P10)
EEG NONFAM VS SCRAMBLED subtraction (P10)
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EEG FAM VS SCRAMBLED
EEG NONFAM VS SCRAMBLED

So why is 
decoding useful at a

ll?



Advantages of MVPA

• Using MVPA, you do not have to specify or know beforehand 
which electrodes contain the experimental effect

• MVPA identifies differences that are not picked up by a regular 
ERP analysis, especially when the locus of the effect is unknown

• This also simplifies the multiple comparisons problem



Example 1: attentional selection (N2pc)

• N2pc: ~200 ms  
attentional capture 
(target selection)

Task: search for gap 
in red item while maintaining fixation



Attentional selection: N2pc

RC

20#ms#

Task: identify the red item (digit or letter)



Example 1: ERP of contingent capture N2Pc

LRP(PO7, PO8) Raw Data 

ms-100 100 200 300 400 500 600

µV

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

20#ms#

4

3

A 2

20#ms#

Task: detect whether red item is digit or letter

You cannot find an N2Pc for top vs bottom because the component is lateralized

RC

20#ms# N2Pc =  
ipsi - contra signal

20#ms#
B

L



How to investigate parallel selection?  
How to determine attention to vertical targets?

A

B
K N

Task: identify the  yellow  and  blue  item



N2Pc

MVPA:classify where the target is

20#ms#

4

3

A 2

20#ms#

Task: detect whether red item is digit or letter

RC

20#ms#

20#ms#
B

L

MVPA extracts any pattern from the data (does not have to be lateralized)
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MVPA extracts any pattern from the data (does not have to be lateralized)

Also for
top vs bottom!

Decodingleft versus right
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Use decoding to identify the ‘vertical’ N2pc

Fahrenfort, J. J., Grubert, A., Olivers, C. N. L., & Eimer, M. (2017). Multivariate EEG analyses support 
high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1886.
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cov_matrix * weights

cov_matrix * weights



Why else is MVPA useful?

• You do not have to select electrodes

• The nice thing about EEG: it has high temporal resolution 
➔ look at the stability and dynamics of neural 
representations over time

• Train on one time point, and test on all the others to assess 
stability of the signal!  
 



Example 2: Tracking memory over time

250 ms

1250 ms

until response

Task: remember orientation and identify by 
clicking on the correct item

memory phase



Six potential orientations to remember

chance performance of classifier: 1/6th



Classification over time
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King,	J.	R.,	&	Dehaene,	S.	(2014).	Characterizing	the	dynamics	of	mental	representa2ons:	
the	temporal	generaliza2on	method.	Trends	in	Cogni*ve	Sciences,	18(4),	203–210.	
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Temporal generalization:  
stability and dynamics over time 

King,	J.	R.,	&	Dehaene,	S.	(2014).	Characterizing	the	dynamics	of	mental	representa2ons:	
the	temporal	generaliza2on	method.	Trends	in	Cogni*ve	Sciences,	18(4),	203–210.	



Why else is MVPA useful  
for MEG/EEG?

• You do not have to select electrodes

• Look at cortical stability and dynamics using temporal 
generalization

• Time-frequency representations (TFRs):  
perform MVPA on time-frequency data



Time-frequency representations 
(TFRs)

Power  
(amplitude)

Frequency

Time
Electrodes



Example of TFR decoding

time in ms
-250 0 250 500 750 1000 1250 1500

fre
qu

en
cy

 in
 H

z

10

20

30 retention

m
em

ory item

baseline

effect specific for 
alpha frequency



T
he

 s
am

e 
co

m
ic

 b
oo

k 
4 

ye
ar

s 
la

te
r



Conclusions

• MVPA allows you to find effects without selecting electrodes

• MVPA allows you to look at temporal generalization 
(stability / dynamics over time)

• MVPA also allows you to look at time frequency data, again 
without selecting electrodes



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset



Lecture 4
ADAM architecture and practical

• Give overview of the ADAM toolbox

• Explain experiment from the practical



1. Pre-processing 
(can do this using EEGLAB, do not need ADAM)

2. First level (single subject) analyses are computed and stored

3. Reading single subject results and compute group statistics

4. Visualize group statistics in a plot

the Amsterdam Decoding and 
Modeling toolbox (ADAM)



ADAM architecture

Use RAW data Compute time-frequency representations

Test fold Training dataiteration 1

iteration 2

iteration 3

iteration 4

iteration 5

The final performance metric  is computed by averaging over test folds (in this example, K=5 ). 

Several transform
ations can be perform

ed on the training and testing data, e.g. 
binnning, w

hitening, com
puting induced pow

er, etc. These transform
ations are 

either perform
ed separately on training and testing data, or they are perform

ed 
indiscrim

inately across all stim
ulus classes.

Option 1:  K-fold cross-validation. Requires a single data file per subject.

Testing dataTraining data

Requires separate data sets for training and testing (either using 
separate files or separate event values for train and test data)

Option 2: 

For every time point, build a backward decoding model (BDM) or forward 
encoding model (FEM) using training data, and compute performance metric 
on testing data. Weights of BDMs are forward transformed.

Import and pre-process  Import native EEG or MEG data into EEGLAB or FieldTrip 
(not part of ADAM)   format, pre-process, e.g. highpass filter, epoching, artefact   
     rejection. Baseline correction and muscle artefact rejection 
     can also be applied by ADAM during first-level analysis.

adam_MVPA_firstlevel In: Epoched files in either EEGLAB or FieldTrip format 
    Out: ADAM result files (one for each subject), containing a    
     performance metric for every train-test time sample (raw)   
     or for every train-test sample of every frequency band (tfr)

adam_compute_group_MVPA In: ADAM result files computed by adam_MVPA_firstlevel
adam_compute_group_ERP Out: ADAM stats variable(s) containing group statistics

adam_compare_MVPA_stats In: ADAM stats variable(s) containing group statistics
     Out: ADAM stats variable(s) containing group statistics

adam_plot_MVPA   In: ADAM stats variable(s) containing group statistics
adam_plot_BDM_weights  Out: publication-ready graphs of performance metrics and/or 
      topographical maps of forward transformed weights  

The performance metric  is computed over the testing data. 
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2. First level (single subject)

Use RAW data Compute time-frequency representations
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written to disk
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3. Group statistics 
4. Plotting
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binnning, w

hitening, com
puting induced pow

er, etc. These transform
ations are 

either perform
ed separately on training and testing data, or they are perform

ed 
indiscrim

inately across all stim
ulus classes.

Option 1:  K-fold cross-validation. Requires a single data file per subject.

Testing dataTraining data

Requires separate data sets for training and testing (either using 
separate files or separate event values for train and test data)

Option 2: 

For every time point, build a backward decoding model (BDM) or forward 
encoding model (FEM) using training data, and compute performance metric 
on testing data. Weights of BDMs are forward transformed.

Import and pre-process  Import native EEG or MEG data into EEGLAB or FieldTrip 
(not part of ADAM)   format, pre-process, e.g. highpass filter, epoching, artefact   
     rejection. Baseline correction and muscle artefact rejection 
     can also be applied by ADAM during first-level analysis.

adam_MVPA_firstlevel In: Epoched files in either EEGLAB or FieldTrip format 
    Out: ADAM result files (one for each subject), containing a    
     performance metric for every train-test time sample (raw)   
     or for every train-test sample of every frequency band (tfr)

adam_compute_group_MVPA In: ADAM result files computed by adam_MVPA_firstlevel
adam_compute_group_ERP Out: ADAM stats variable(s) containing group statistics

adam_compare_MVPA_stats In: ADAM stats variable(s) containing group statistics
     Out: ADAM stats variable(s) containing group statistics

adam_plot_MVPA   In: ADAM stats variable(s) containing group statistics
adam_plot_BDM_weights  Out: publication-ready graphs of performance metrics and/or 
      topographical maps of forward transformed weights  

The performance metric  is computed over the testing data. 

read from disk



The experiment

Pre-stimulus:   400-600 ms jittered
Stimulus:   800-1000 ms jittered (scrambled/familiar/unfamiliar)

ITI:   1700 ms
Response:  indicate ‘symmetry’

scrambled
familiar

unfamiliar
unfamiliar

scrambled

familiar

time

Open dataset, containing simultaneously recorded EEG/MEG

Wakeman, D. G., & Henson, R. N. OpenfMRI ds000117 (2014). https://openfmri.org/dataset/ds000117/
Wakeman, D. G., & Henson, R. N. (2015). A multi-subject, multi-modal human neuroimaging dataset. Scientific Data, 2.

https://openfmri.org/dataset/ds000117/


Face-selective  
N170 component in EEG

N170

Eimer, M. (2000). The face-specific N170 component reflects late stages in 
the structural encoding of faces. Neuroreport, 11(10), 2319–2324.



Table of experimental design

Famous Nonfamous Scrambled
First presentation 5 13 17

Immediate repeat 6 14 18
Delayed repeat 7 15 19

Factor 
‘stimulus type’

Factor 
‘stimulus repetition’

This factor ‘stimulus repetition’ exists in the experiment, but we do not 
analyze it, we only look at the first presentations

Numbers in the table denote event codes



ADAM analysis pipeline

1. Pre-processing 
(can do this using EEGLAB, do not need ADAM)

2. First level (single subject) analyses are computed and stored

3. Compute group statistics after reading in single subject results

4. Visualize group statistics in a plot



Practical, use the ADAM toolbox 

• Part I:   Group analysis of raw EEG/MEG:

‣ Comparing ERPs to MVPA

• Part II:   Group analysis: 

‣ Temporal generalization time-by-time matrix

• Part III:  First-level (single subject) analysis of raw data

• Part IV:  Group analysis

‣ Time-frequency (TFR), time-by-frequency / temporal generalization

• Part V:  First-level (single subject) analysis of TFR data + play around 
with the scripts/data  



Questions?



Course overview
• Day 1 (introduction)

‣ lecture 1: History and electrophysiological basis of EEG

‣ lecture 2: Backward decoding models in MVPA: concepts and analytical approach

‣ lecture 3: Advantages of MVPA, the temporal generalization method

‣ lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical

‣ Afternoon: practical

• Day 2 (advanced)

‣ lecture 1: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior

‣ lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach

‣ Afternoon: practical, analyze your own data and/or a supplied dataset


