

Multivariate Pattern Analysis (MVPA) in MEG/EEG

Johannes Fahrenfort

Graduate education network

Course overview

• Day I (introduction)

- Iecture I: History and electrophysiological basis of EEG
- lecture 2: Backward decoding models in MVPA: concepts and analytical approach
- lecture 3:Advantages of MVPA, the temporal generalization method
- lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical

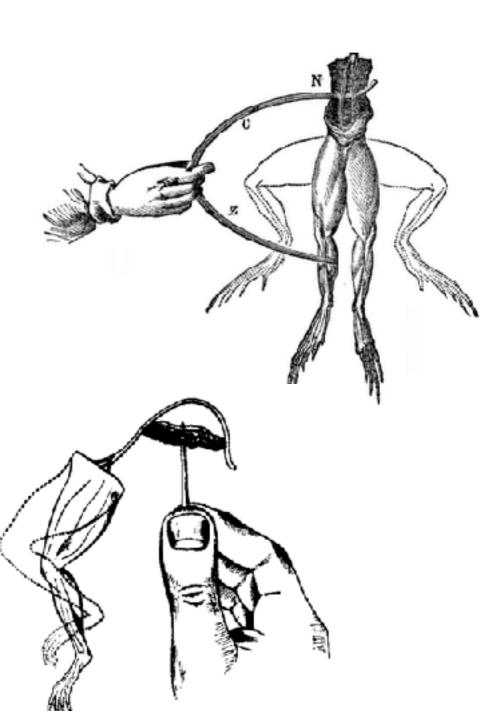
• Day 2 (advanced)

- lecture I: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
- lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
- Afternoon: practical, analyze your own data and/or a supplied dataset

Lecture I -History and neurophysiology of EEG/MEG

Luigi Galvani, the father of electrophysiology

- Electrophysiology: the study of the electrical properties of biological cells and tissues
- Galvani discovered in the late 1780s that stimulating the nerves of a dead frog with electricity resulted in muscle movement
- He coined the term 'animal electricity' to describe the force that activated these movements



The history of electroencephalography (EEG)

- Gustov Fritsch and Eduard Hitzig (1870) showed that electrically stimulating the sensory-motor *cortex* of a dog produced movement
- Richard Caton (1875) showed the existence of electrical activity in exposed rabbit brain
- On July 6, 1924, **Hans Berger** (after 30 years of trying) for the first time recorded EEG from a human subject:

Hans Berger

- It took another 5 years (1929) before Berger dared to publish his results in "Uber das elektrenkephalogramm des Menschen" ("On the Electroencephalogram of Man")
- Between 1929 and 1938, Berger published 14 papers with the same title, distinguished from one another only numerically (report 1, report 2 etc)
- Many of the phenomena that Berger studied are still under investigation today

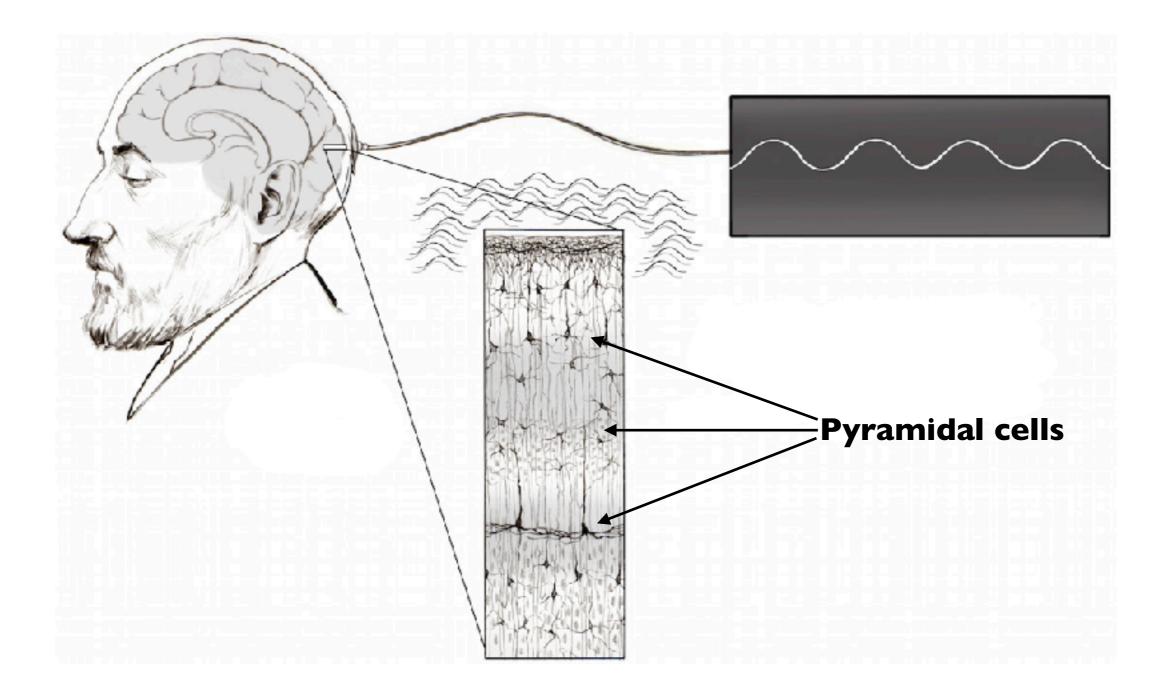
So what is EEG, really?

A few basic concepts

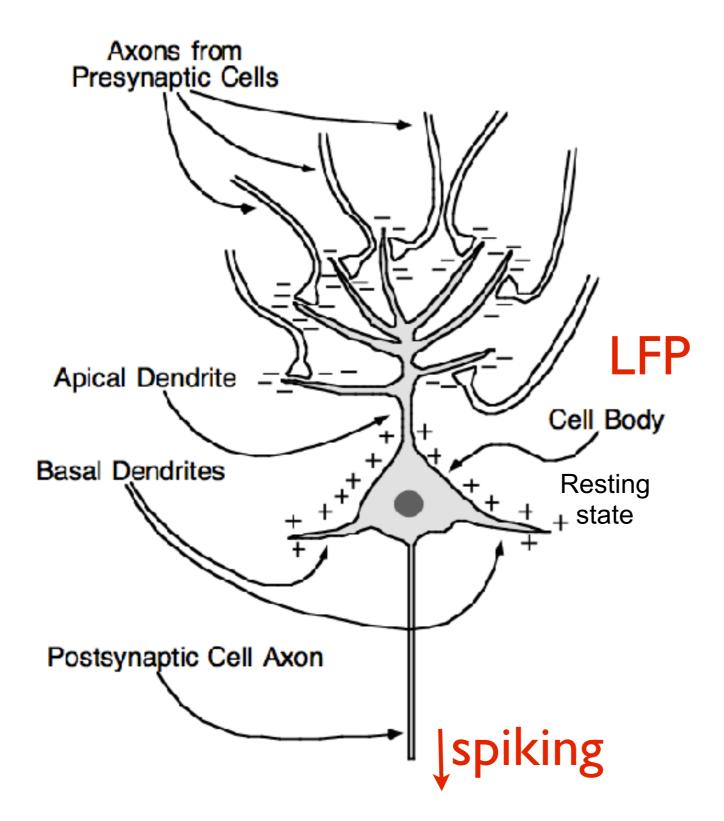
Voltage

- the *potential* of current to flow from one point to another.
- think of it as "water pressure".
- this is a relative measure!
- Current
 - number of charged particles (electrons, ions) that flow in a given time.
 - think of it as the volume of a "water flow".
- Resistance
 - resistance to movement of charges
 - like having a skinny or blocked hose segment
- Ohm's Law: Voltage = Current * Resistance

So what does EEG measure?



Source of electric signal: cell polarization of pyramidal neurons

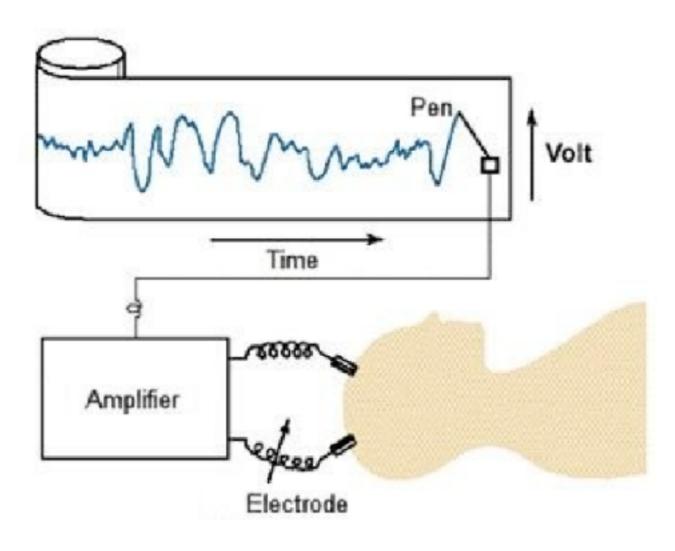


- Excitatory neurotransmitter released on dendrites causes positive charges to flow into dendrite
- Net negative on outside of dendrite
- Current flows through cell, leading to new spiking activity
- Polarity reverses with inhibitory neurotransmitter or postsynaptic potential on cell body / basal dendrites

Spiking activity versus local field potential (LFP)

- Local Field Potential (LFP): the result of synchronized input activity of many dendrites into neurons
- Action potential (spiking): the **output activity** of a neuron

EEG

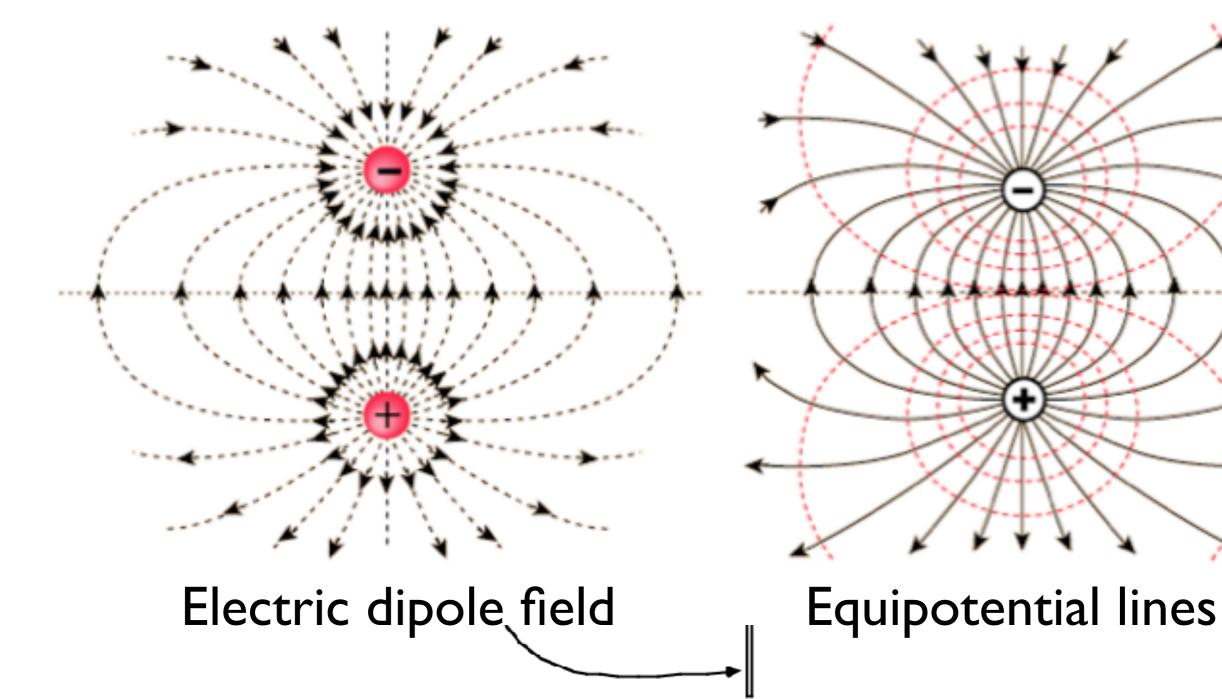


Measure volt difference between electrode and reference on the scalp

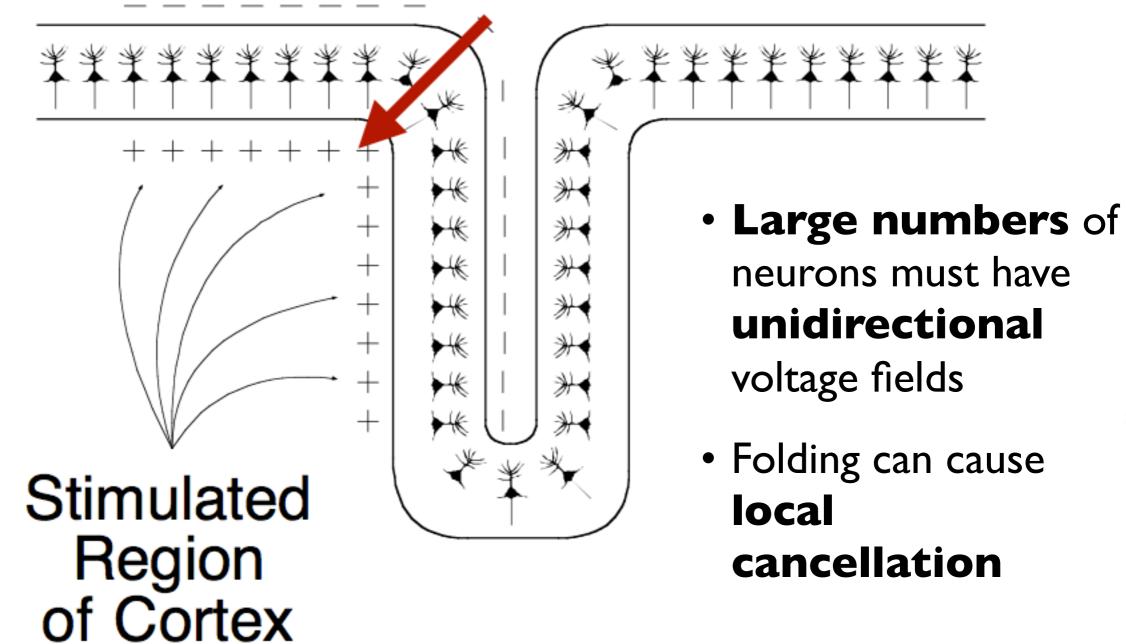
LFPs generate dipoles

+

Axons from

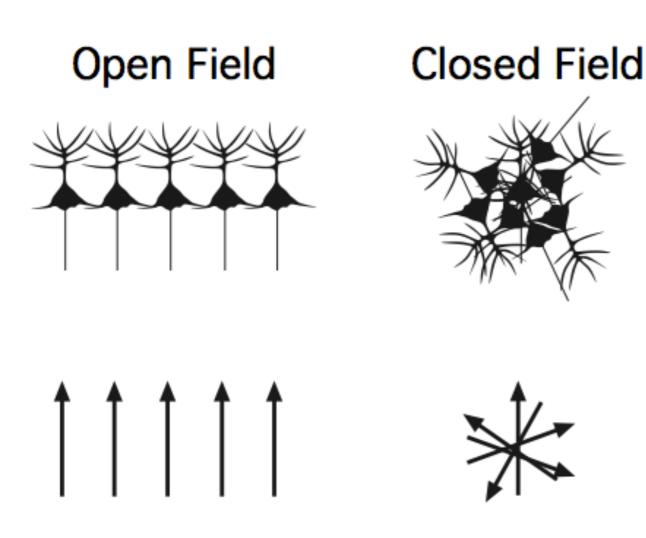


Cortical fold



Equivalent Current Dipole

Source of EEG

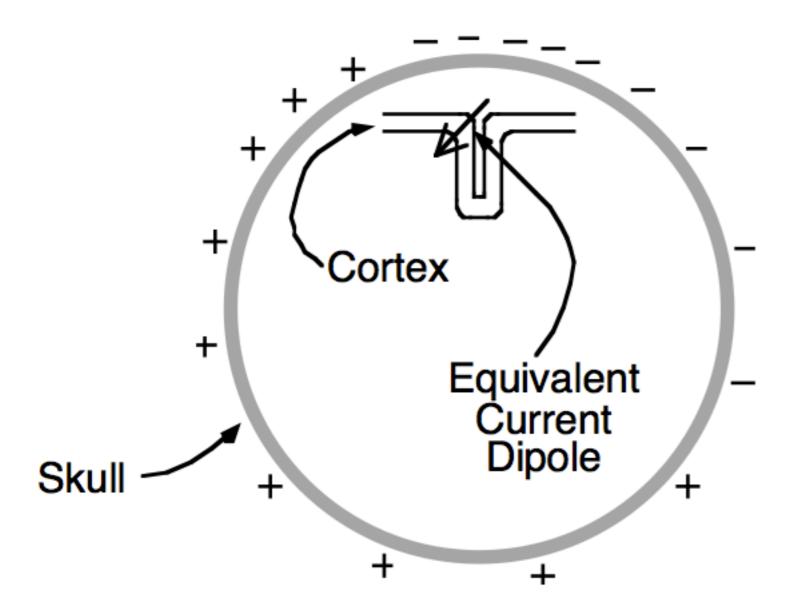


Local Field Potentials

 Local field potentials (summation of postsynaptic inputs)
 NOT spiking activity / action potentials

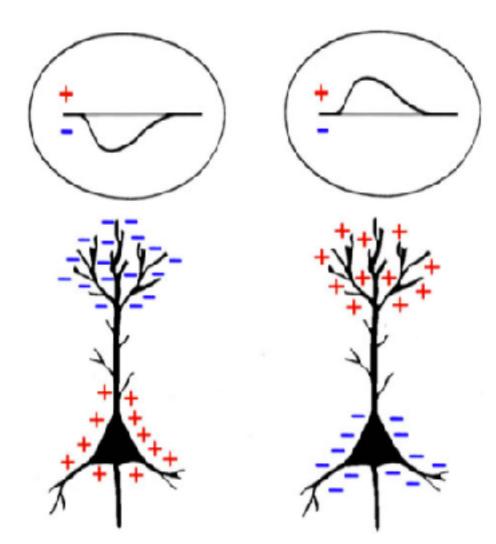
 Scalp-recorded potentials only possible for layered structures with consistent orientations, which are mostly **cortical** (not subcortical)

Source of EEG



- Voltages spread through the head through volume conduction
- Voltage everywhere except at negativepositive transition
- Skull causes lateral spread (blurring)

Inhibition/excitation



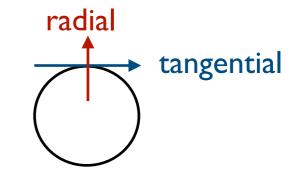
Orientation of neurons with respect to electrode is in practice unknown

Moreover, either of these neurons may receive excitatory/inhibitory inputs at dendrite/soma

It is impossible to know whether a positive or negative EEG deflection is caused by inhibition or excitation

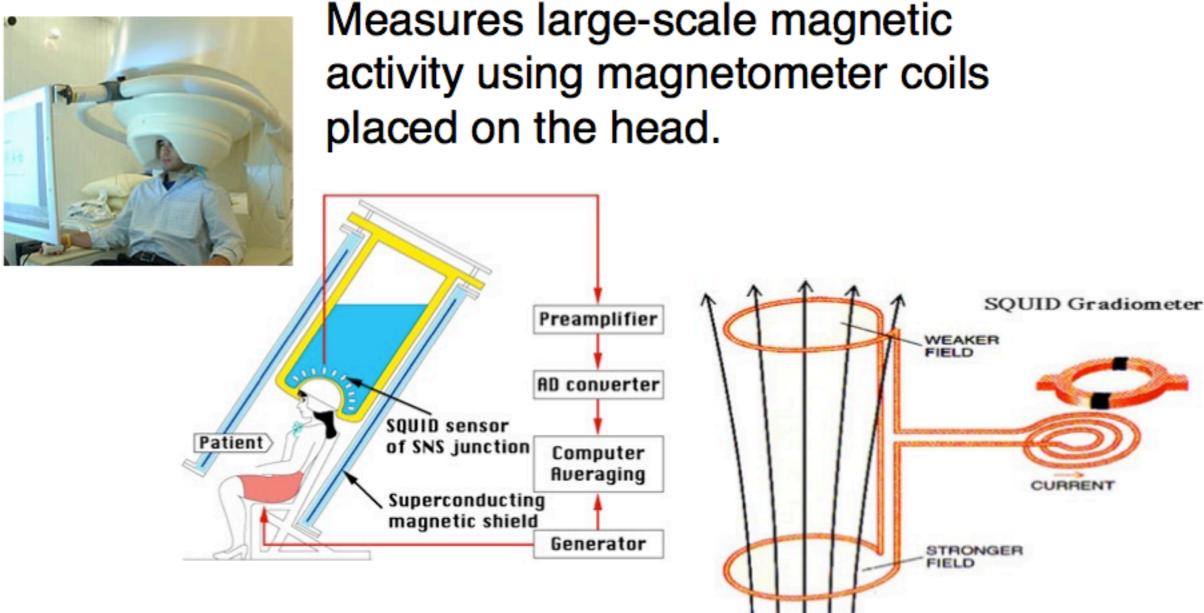
Three requirements for EEG

- Many LFPs need to occur at the same time to create a sufficiently strong dipole (synchronous activity of many neurons)
- 2. Dipoles (and thus neurons) need to have the same orientation
- Can only measure radial dipoles. Neurons should not be oriented in parallel to the cortical surface.



A lot of event-related neural activity does *not* meet these requirements; what does that mean for the interpretation of EEG?

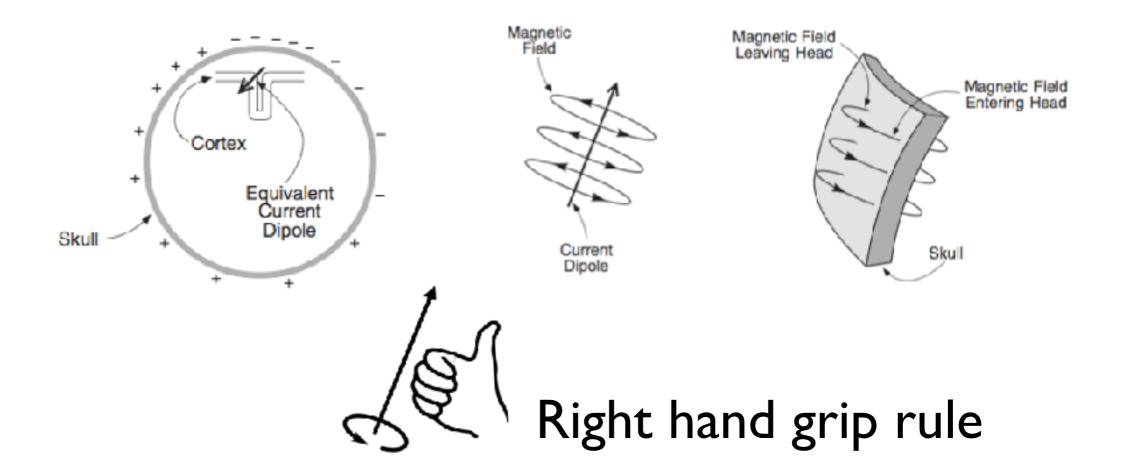
Magnetoencephalography (MEG)



No blurring

SQUID: superconducting quantum interference device

Magnetoencephalography (MEG)



radial

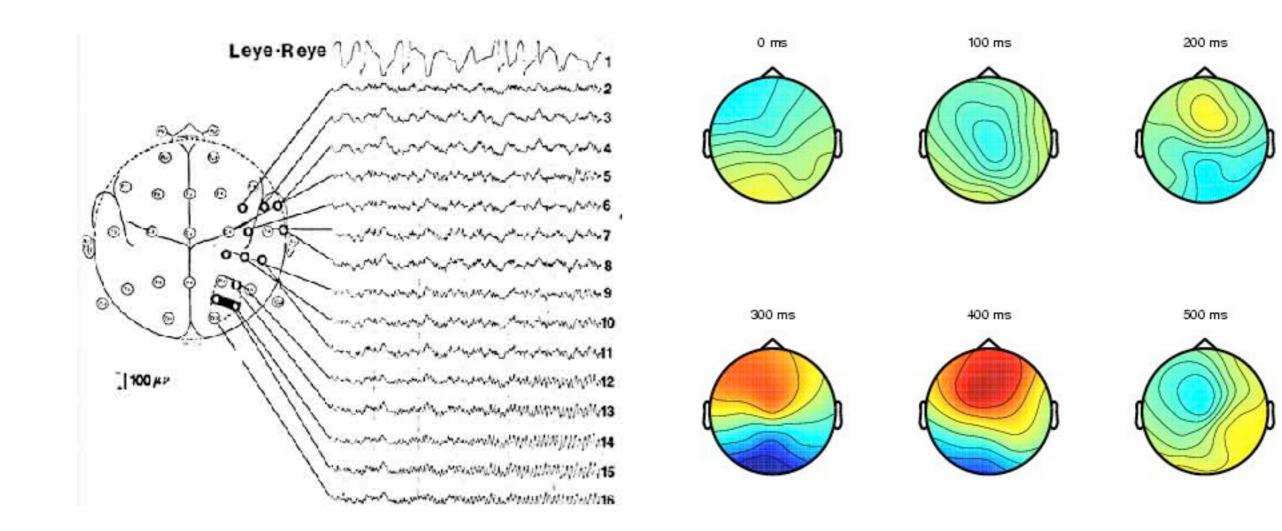
tangential

only measures magnetic fields that leave the skull, so cannot detect dipoles oriented perpendicular to the scalp (= cannot measure radial dipoles)

The MEG/EEG signal

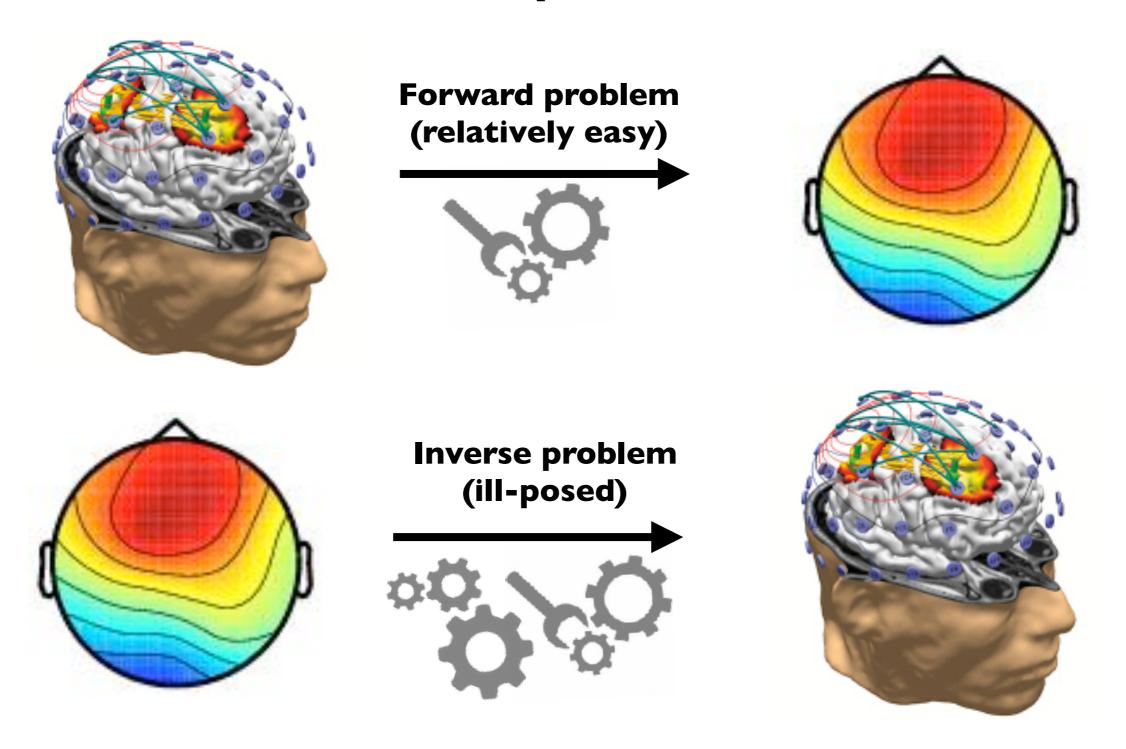
- MEG/EEG is primarily temporal, acquired at discrete moments in time, called **samples**
- The temporal resolution at which these samples are acquired is called the sampling rate
- MEG/EEG is also spatial, acquired across a varying number of electrodes (in MEG and analysis software these are often called channels)
- The number of electrodes in EEG can vary from anywhere between 1 to 256 channels, a typical number is 64
- The signal in each of the channels can be plotted over time, as can be seen in an event related potential (ERP)
- The signal across channels for a particular time point can be plotted in a topographical map: the **topomap**

channels \rightarrow topomap



10

Forward problem versus Inverse problem



MEG/EEG analysis

- Typically MEG/EEG is **pre-processed** to remove artifacts
- Next, there are many potential analytical approaches:
 - Event Related Potentials (won't talk much about ERPs)
 - Time-frequency representations (will talk a little about **TFRs**)
 - Multivariate approaches (will mostly talk about MVPA)
- Approaches are not mutually exclusive (can be combined)
- Ultimate goal in cognitive neuroscience is to characterize brain activity that subserves cognition and mental life (Hans Berger!)

Analysis software

- Standard main packages:
 - EEGLAB (user friendly, Matlab)
 - MNE (versatile, Python)
 - Brainstorm (Matlab, source reconstruction)
 - Brain Vision Analyzer (BVA, proprietary expensive, click and drag GUI)
- Some more dedicated toolboxes:
 - ERPLAB (Matlab, ERPs)
 - FieldTrip (Matlab, TFRs)
 - CoSMoMVPA (decoding, Matlab)
 - the Neural Decoding Toolbox (decoding, Matlab)
 - the ADAM toolbox (decoding/forward encoding, Matlab)
 - the PyMVPA toolbox (decoding, Python)

Questions?

Course overview

• Day I (introduction)

- Iecture I: History and electrophysiological basis of EEG
- Iecture 2: Backward decoding models in MVPA: concepts and analytical approach
- Iecture 3:Advantages of MVPA, the temporal generalization method
- Iecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical
- Day 2 (advanced)
 - Iecture I: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
 - Iecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
 - Afternoon: practical, analyze your own data and/or a supplied dataset

Lecture 2 -

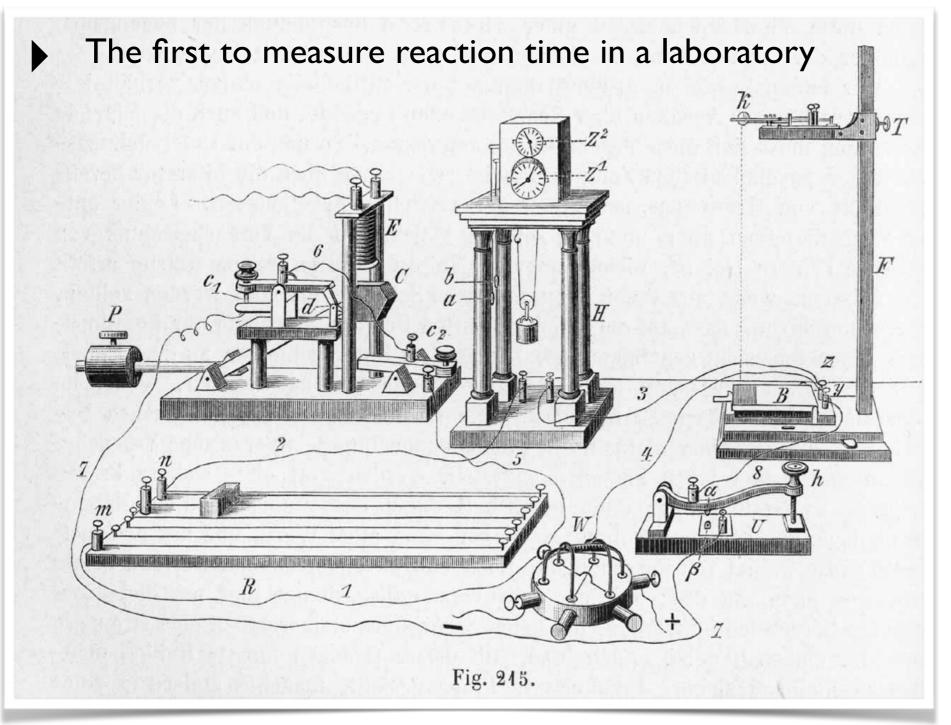
Basic concepts and procedures in MVPA

- What is MVPA (decoding)? Univariate vs Multivariate (MVPA)
- Approaches and concepts:

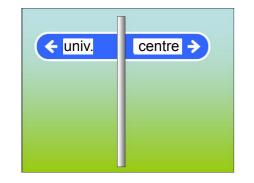
Train-test procedures, overfitting, K-fold cross validation, overfitting, classes, classifier, features, the decision boundary, weights, forward-transformed weights

- The confusion matrix, performance measures, balancing
- Balancing: undersampling and oversampling

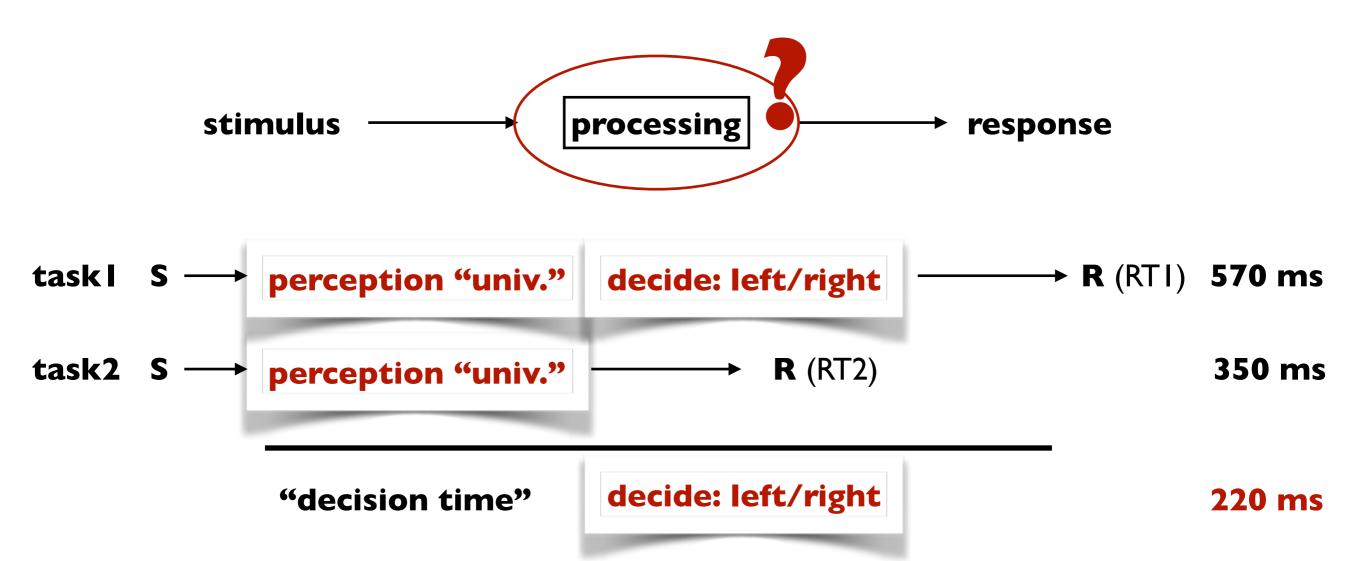
Franciscus Donder's mental chronometry (1868)



Subtraction



The difference between the task RTs should tell us the "decision time"!



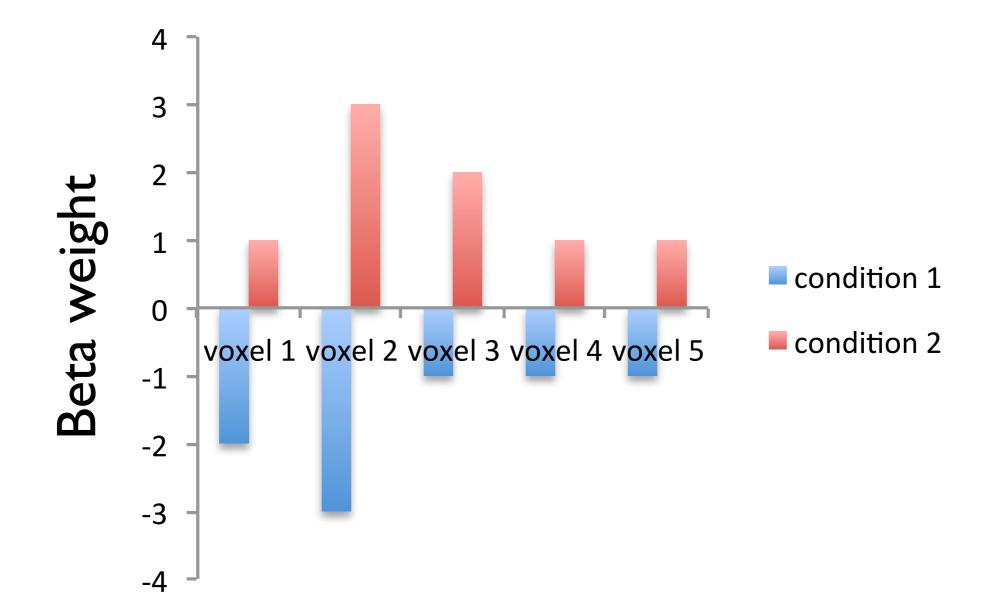
Donders' subtraction methodology (reaction times)

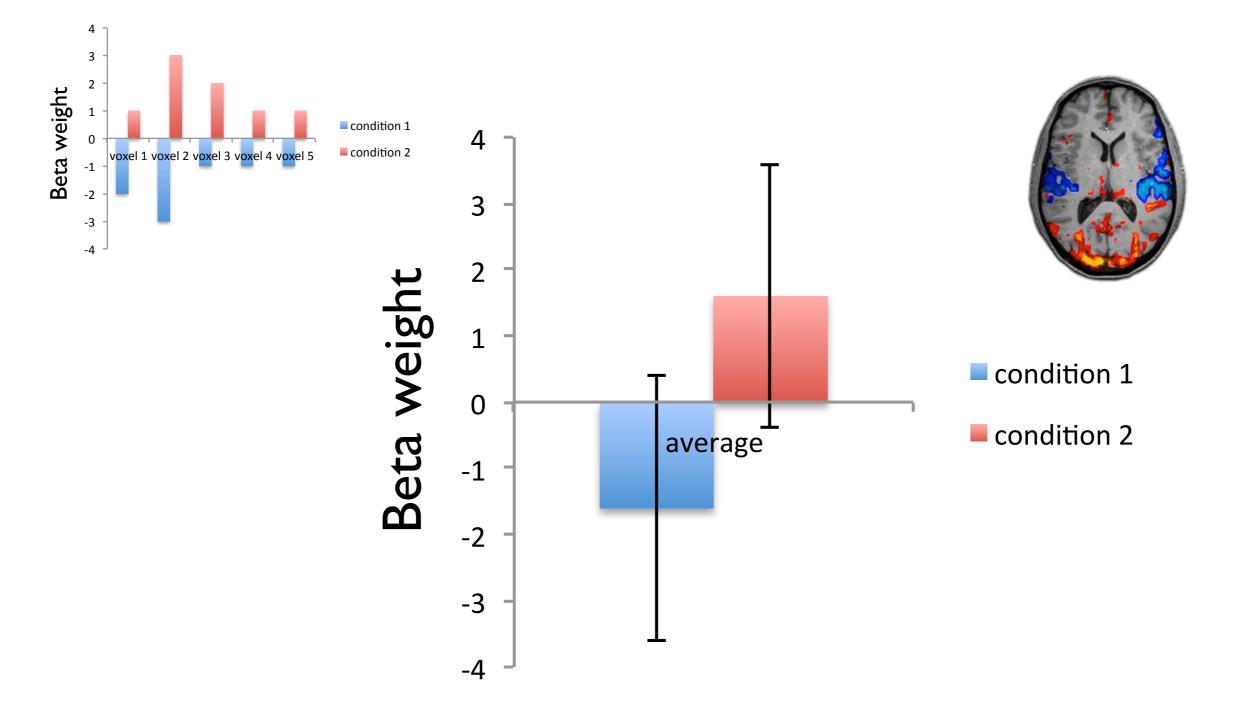
"The idea occurred to me to interpose into the process of physiological time some new components of mental action. If I investigated how much this would lengthen the physiological time, this would, I judged, reveal the time required for the interposed term" Donders (1868)

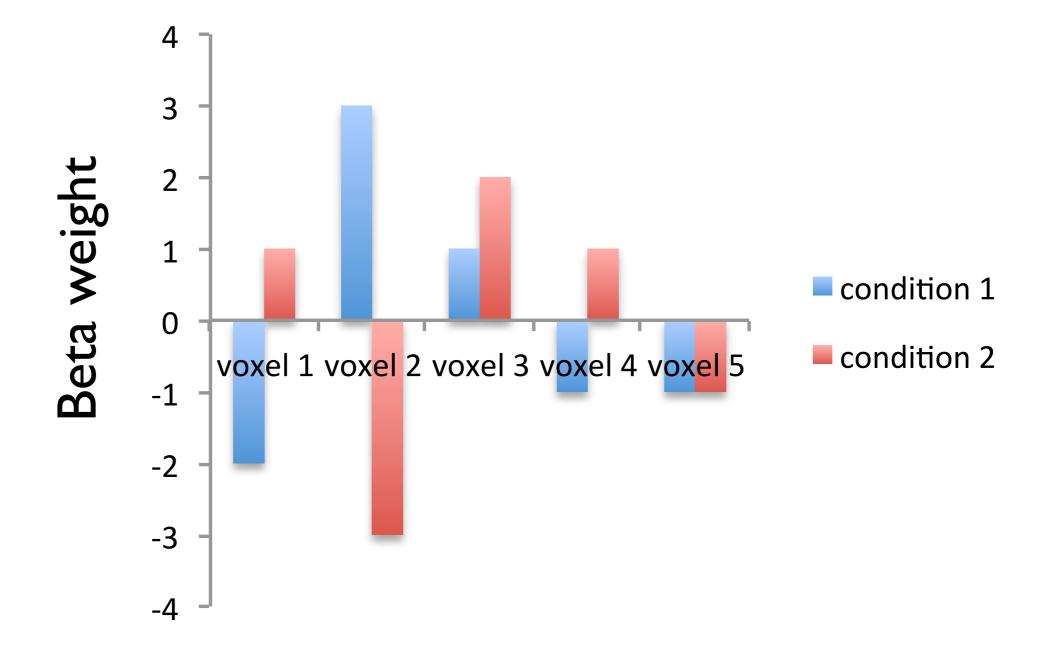
MVPA - what is it?

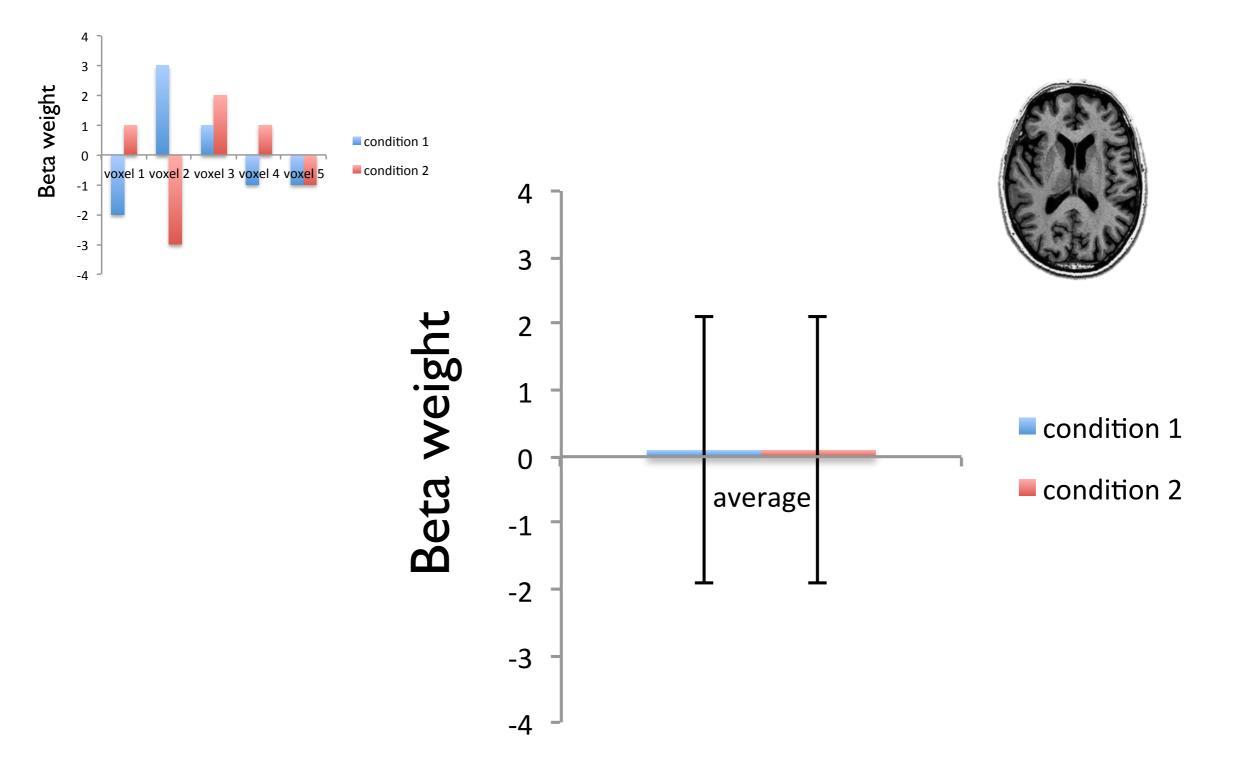
- Military Vehicle Preservation Association
- Multivoxel pattern analysis (fMRI)

- Multivariate pattern analysis (EEG and fMRI)
- Univariate versus Multivariate

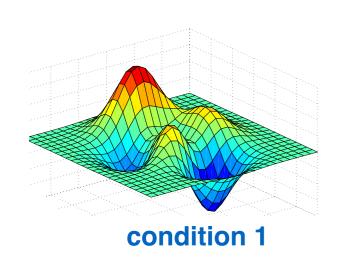


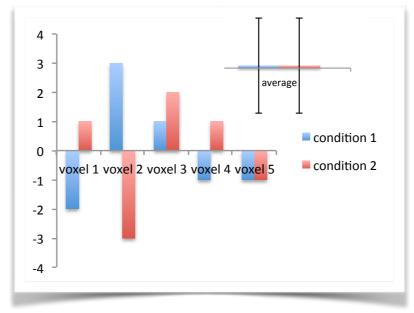


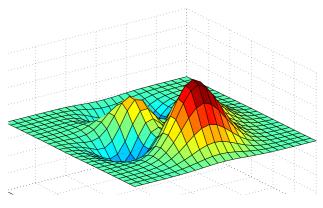




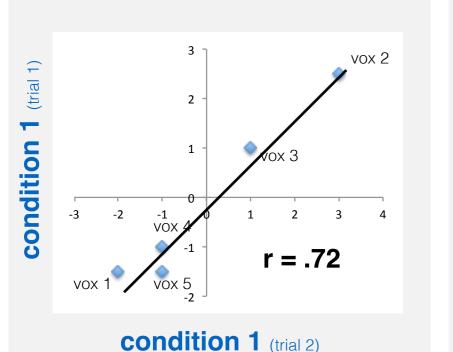
But multivariate signal may be consistent!

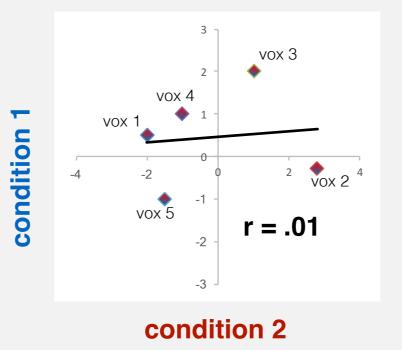


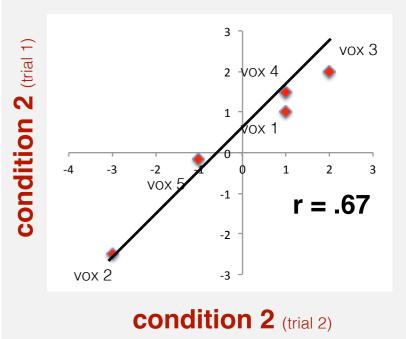




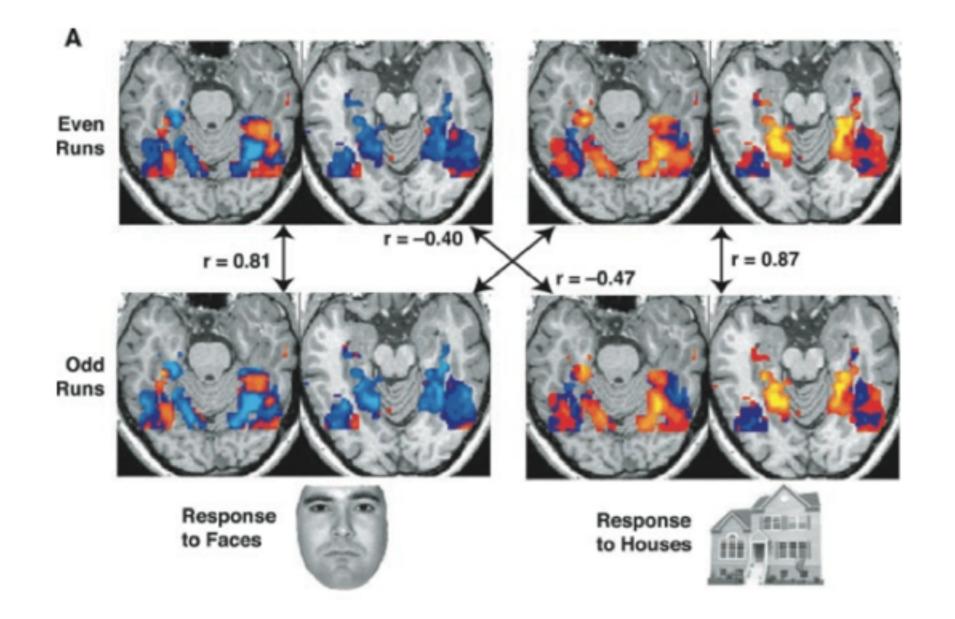
condition 2





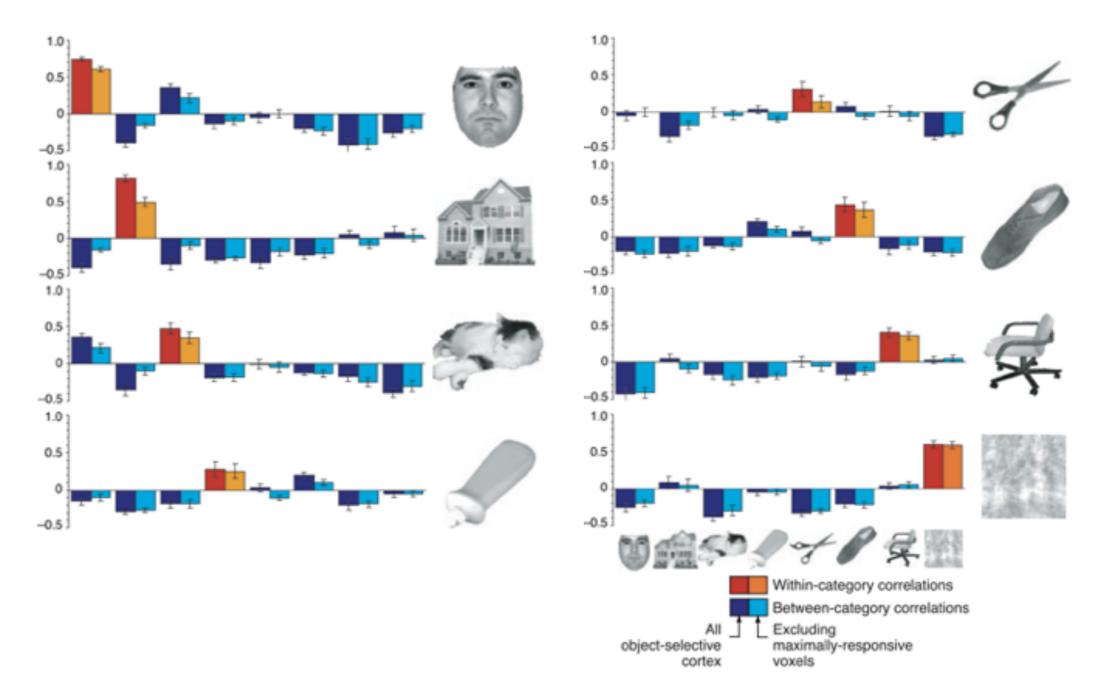


The first truly multivariate study in fMRI



Haxby, J.V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. *Science*, 293(5539), 2425–2430.

The first truly multivariate study in fMRI

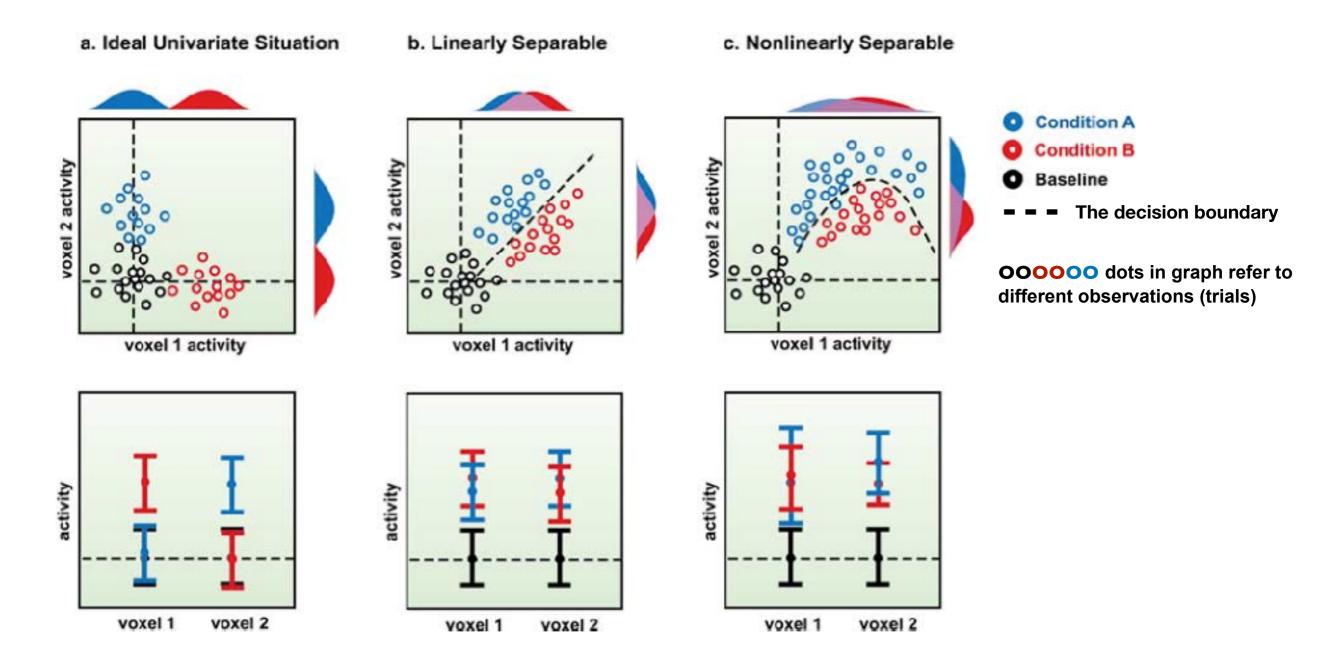


Haxby, J.V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. *Science*, 293(5539), 2425–2430.

How to identify multivariate patterns ('landscapes')?

- Representational Similarity Analysis (RSA, correlation) or Representational Dissimilarity Matrices (RDMs, I-correlation)
- Train-test algorithms (e.g. LDA, SVM) :
 - linear classifiers
 - nonlinear classifiers

Univariate versus Multivariate analysis

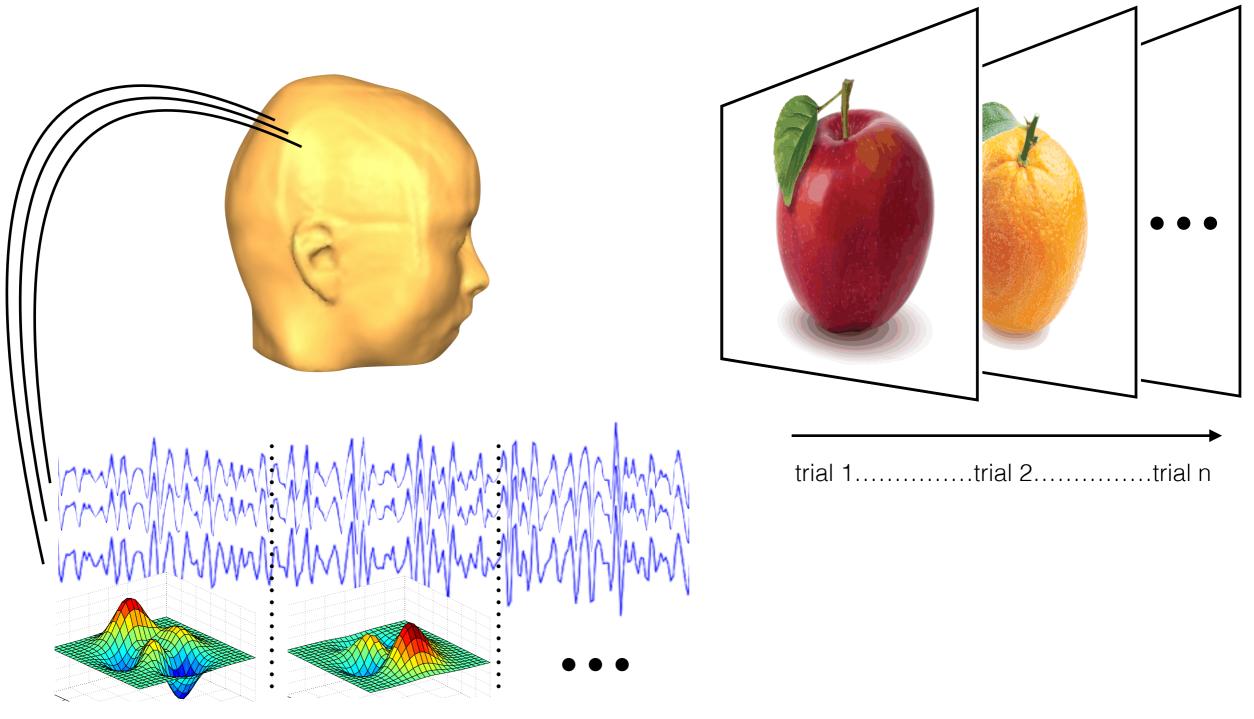


Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. *NeuroImage*, 19(2), 261–270.

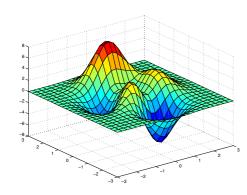
MVPA in EEG

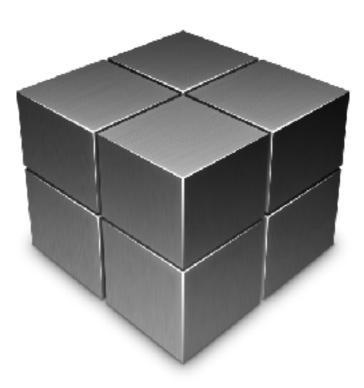
- Essentially the same thing as in fMRI, now using electrodes rather than voxels as features
- ERPs are conceptually similar to old school univariate GLM analysis in fMRI
- Using MVPA, you can identify whether patterns of activation across the brain are different between conditions (even when specific ERPs would look highly similar)

Experiment: find a Neural Correlate of processing Apples and Oranges (NCAO)

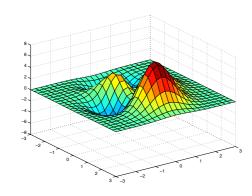


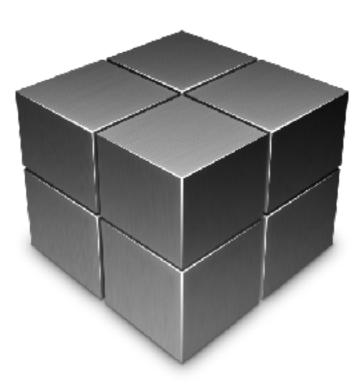
trial 1.....trial 2.....trial n



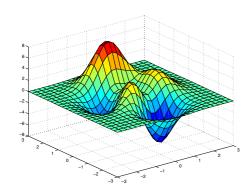


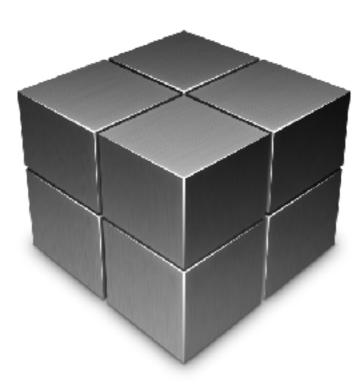
"apple"



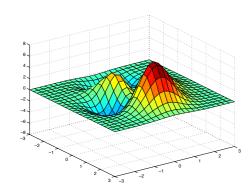


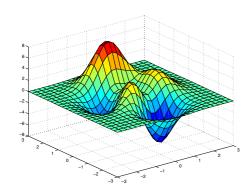
"orange"

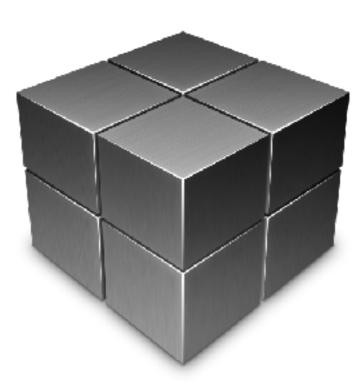




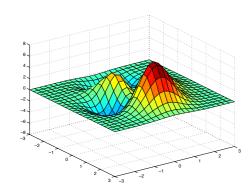
"apple"

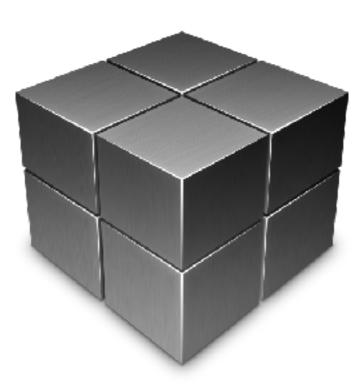




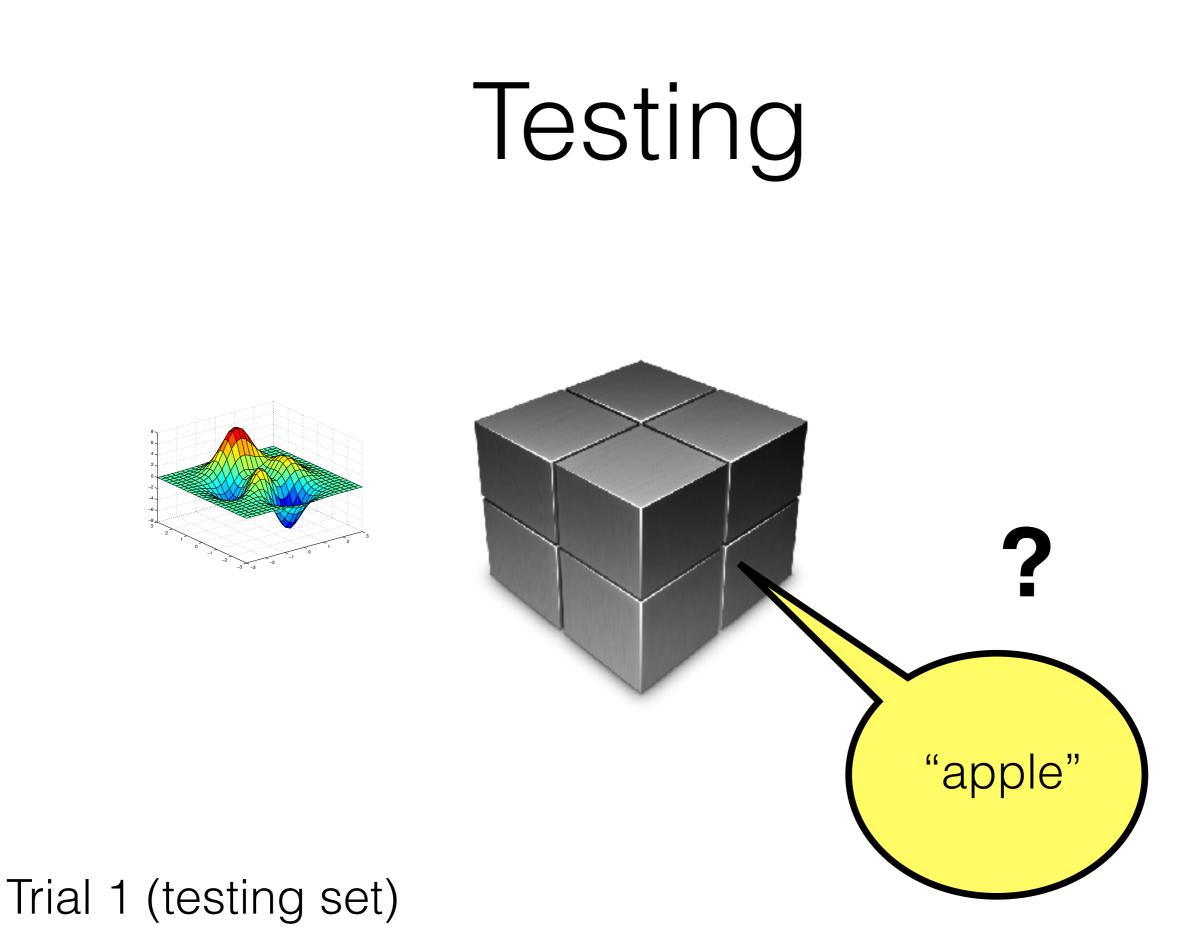


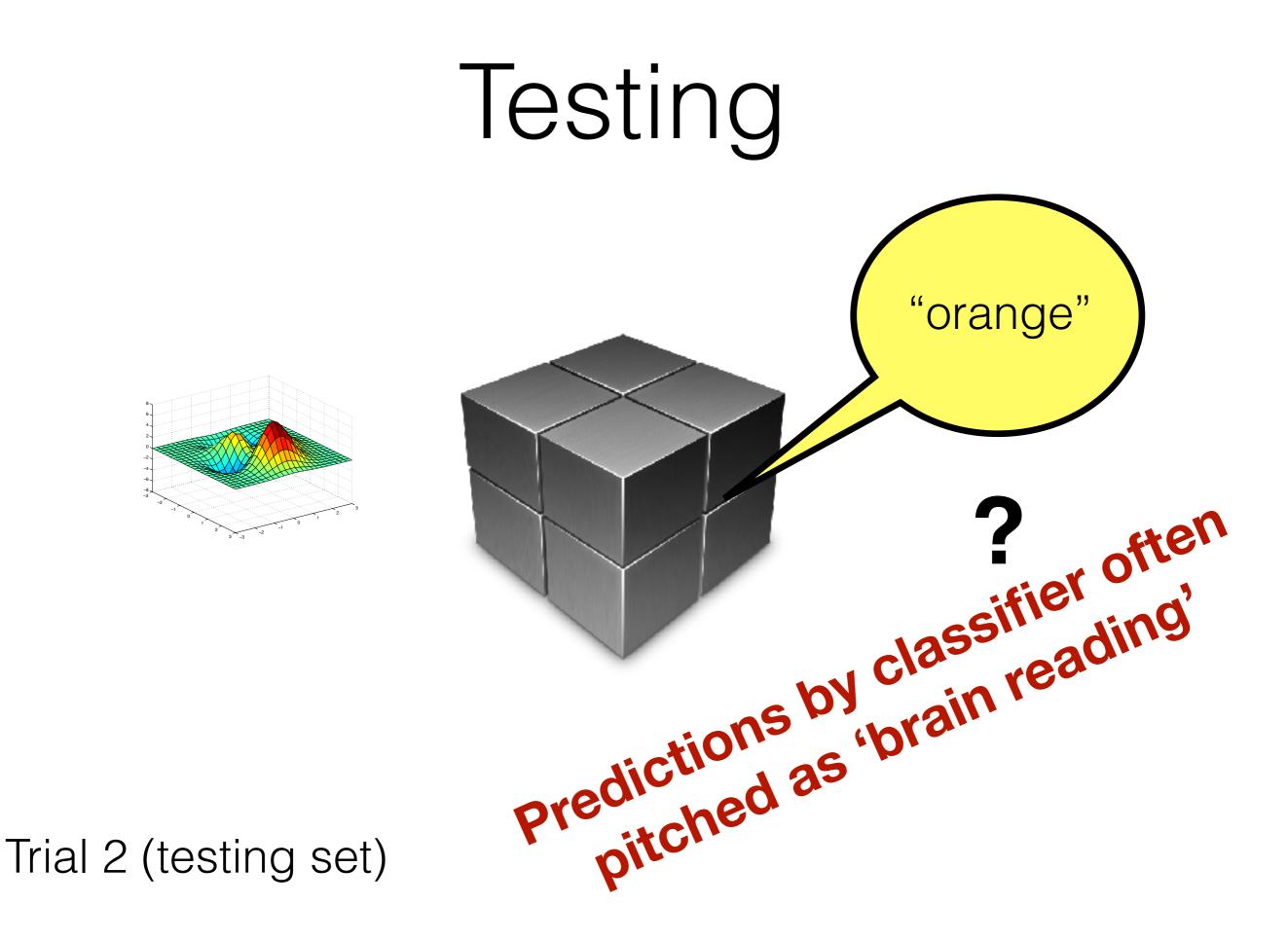
"apple"

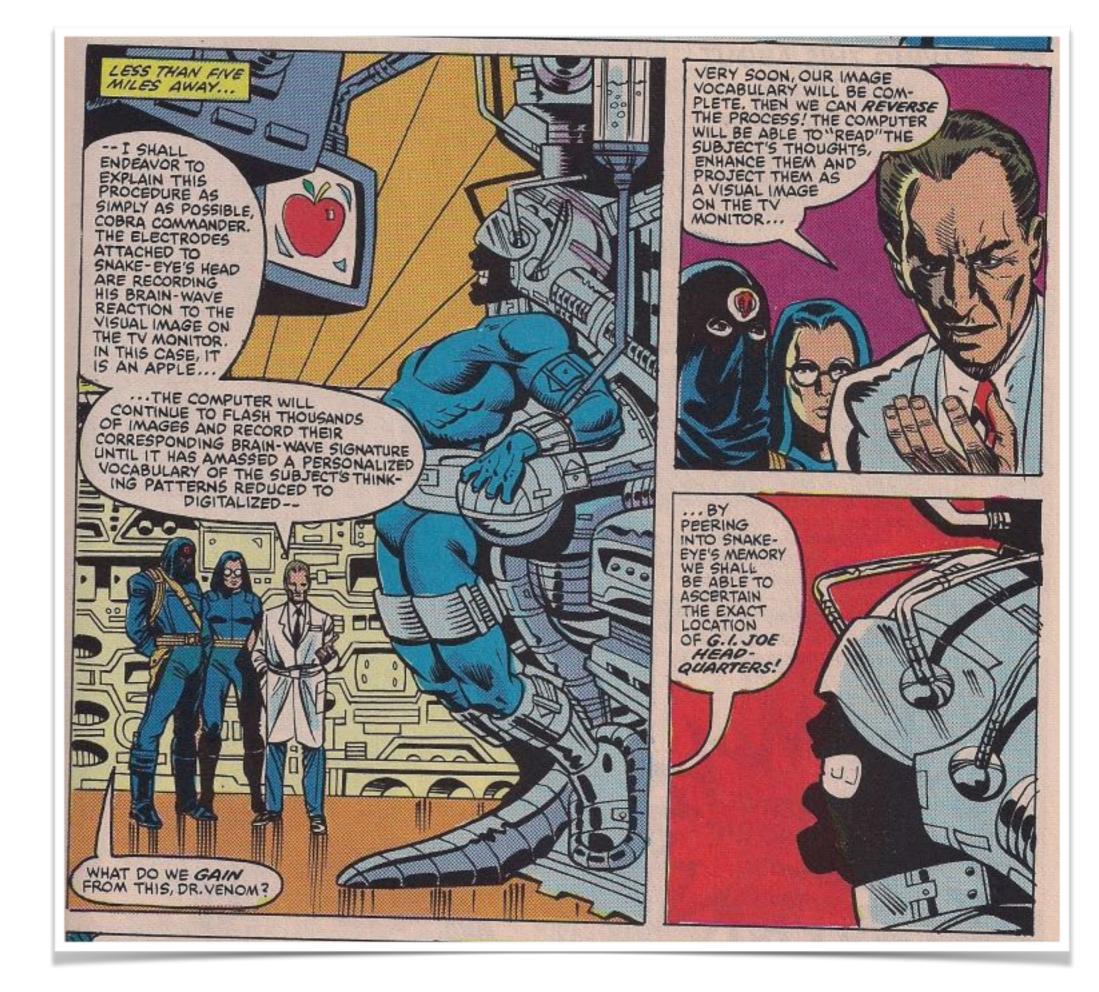




"orange"







0 0 0 U comi \mathbf{m} 00 0 J rom ĽL.

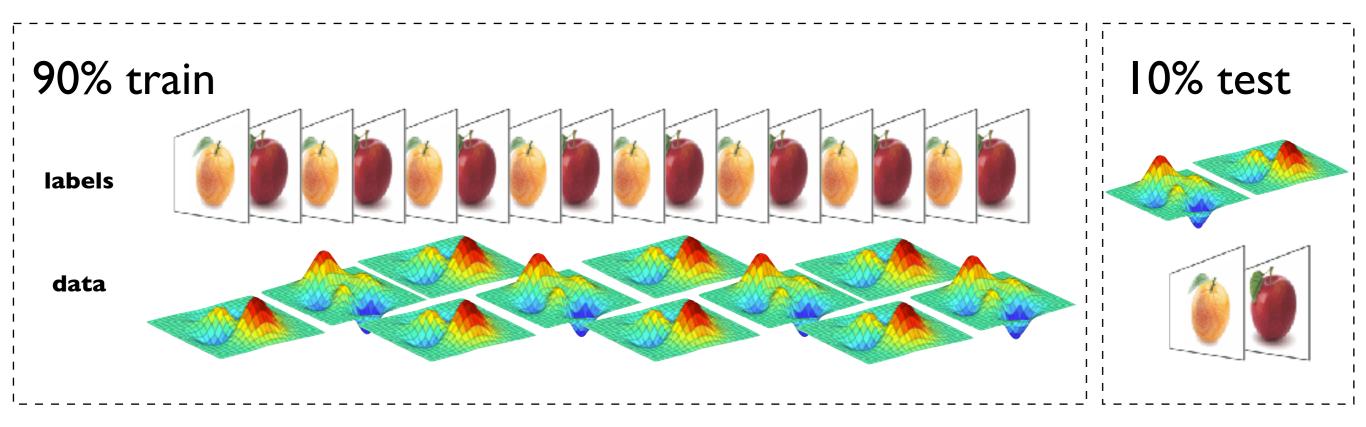
 \checkmark

Decoding: computing classification performance on test data

Train-test schemes

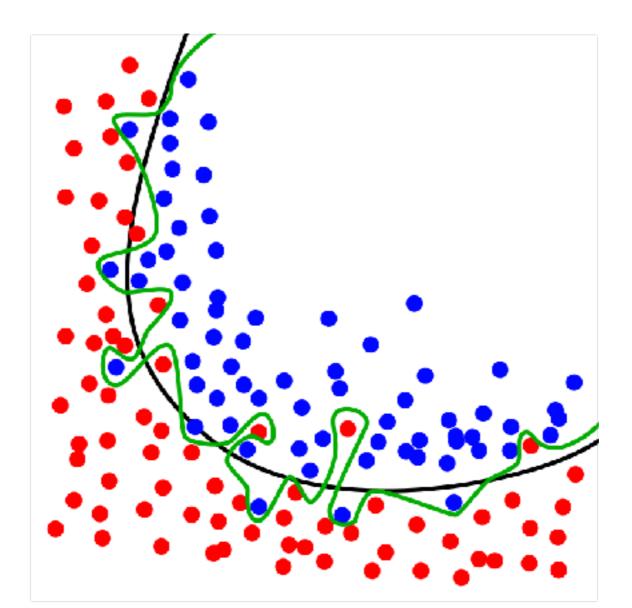
- Your training set should always be *independent* from your testing set (never use the same data for training and for testing)
- Two ways of doing this:
 - Use the same dataset for training and testing, while never training on the same data as you tested on:
 k-fold cross-validation
 - Use two different datasets, a separate training set for training, and a different one for testing

K-fold cross-validation



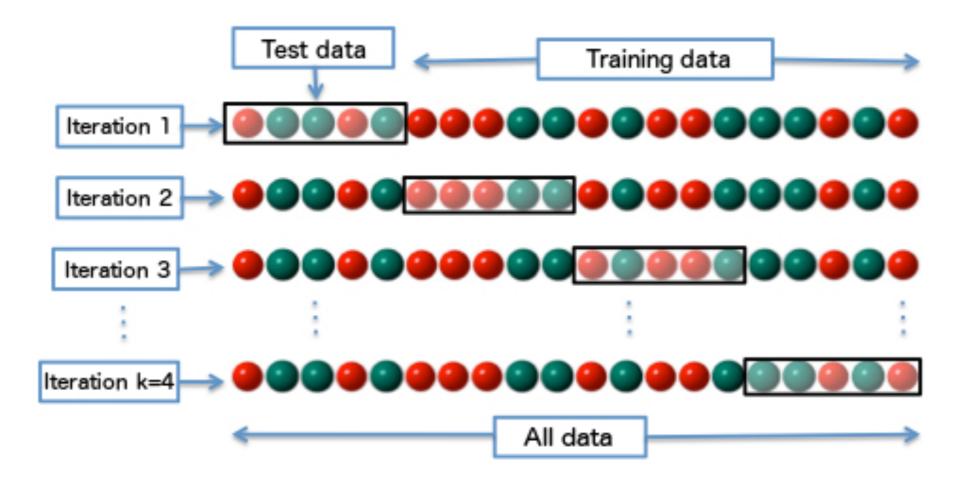
compute accuracy on test data WHY? Repeat until all data has been tested once and compute classification performance across folds

Keep train and test data independent to prevent overfitting



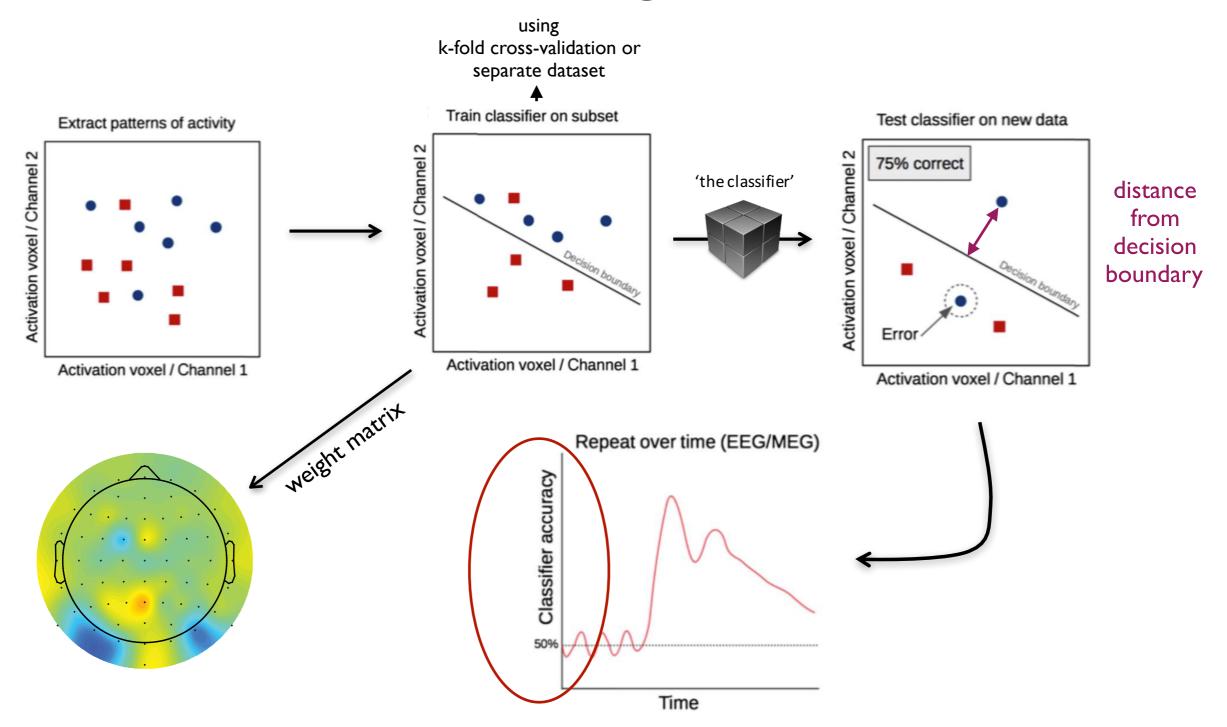
Conceptually similar to double dipping (= using the same data for data selection and statistical testing)

Why is it called K-fold cross-validation?



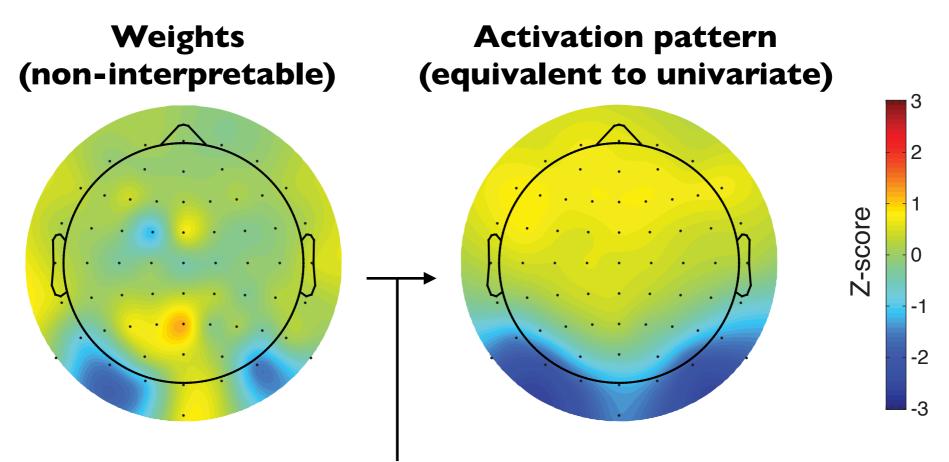
- If k = 4, the classification will be ran 4 times, each time training on 75% of the data and testing on 25% of the data
- The result will be averaged across the **4 folds**, thus testing all data exactly once
- If *k* is equal to the number of trials in your dataset, the method is called a **leave-one-out cross-validation procedure**
- Alternatively, you can collect a **separate** dataset for training your classifier (akin to a '*mapper*' in fMRI analysis)

What do EEG decoding results look like?



Grootswagers, T., Wardle, S. G., & Carlson, T.A. (2017). Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. *Journal of Cognitive Neuroscience*, 29(4), 677–697.

Weight matrix



Two options:

- I) weights * covariance matrix = activation pattern
- 2) weights * correlation matrix = class/correlation separability map

Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D., Blankertz, B., & Biessgmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. *NeuroImage*, 87, 96–110.

Performance measures: the confusion matrix

A confusion matrix is a table that is used to describe the performance of a classification model (or "**classifier**") on a set of test data for which the true values are known.

		Predicted:	Predicted:	
n=165		NO	YES	
Ac	tual:	correct rejections	false alarms	
	NO	50	10	
Ac	tual:	misses	hits	
YES		5	100	

Performance measures: overall accuracy

The percentage correctly classified instances across all data. Highly sensitive to bias (especially when classes are not balanced) **should not be used, ever.**

n=165	Predicted: NO	Predicted: YES
Actual: NO	0	60
Actual: YES	0	105

Accuracy = 105 / 165 = 63%!

Performance measures: balanced accuracy

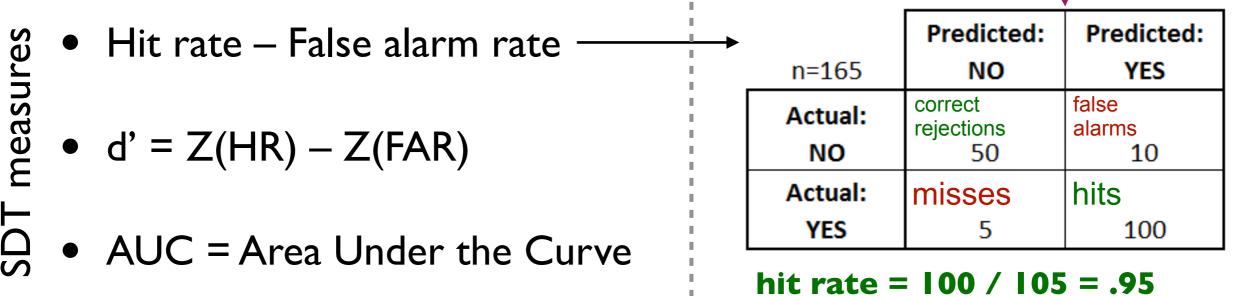
Balanced accuracy = average percentage correct for each class, averaged across classes

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	0	60
Actual:		
YES	0	105

Accuracy = (0/60 + 105/105)/2 = (0 + 1)/2 = 50%

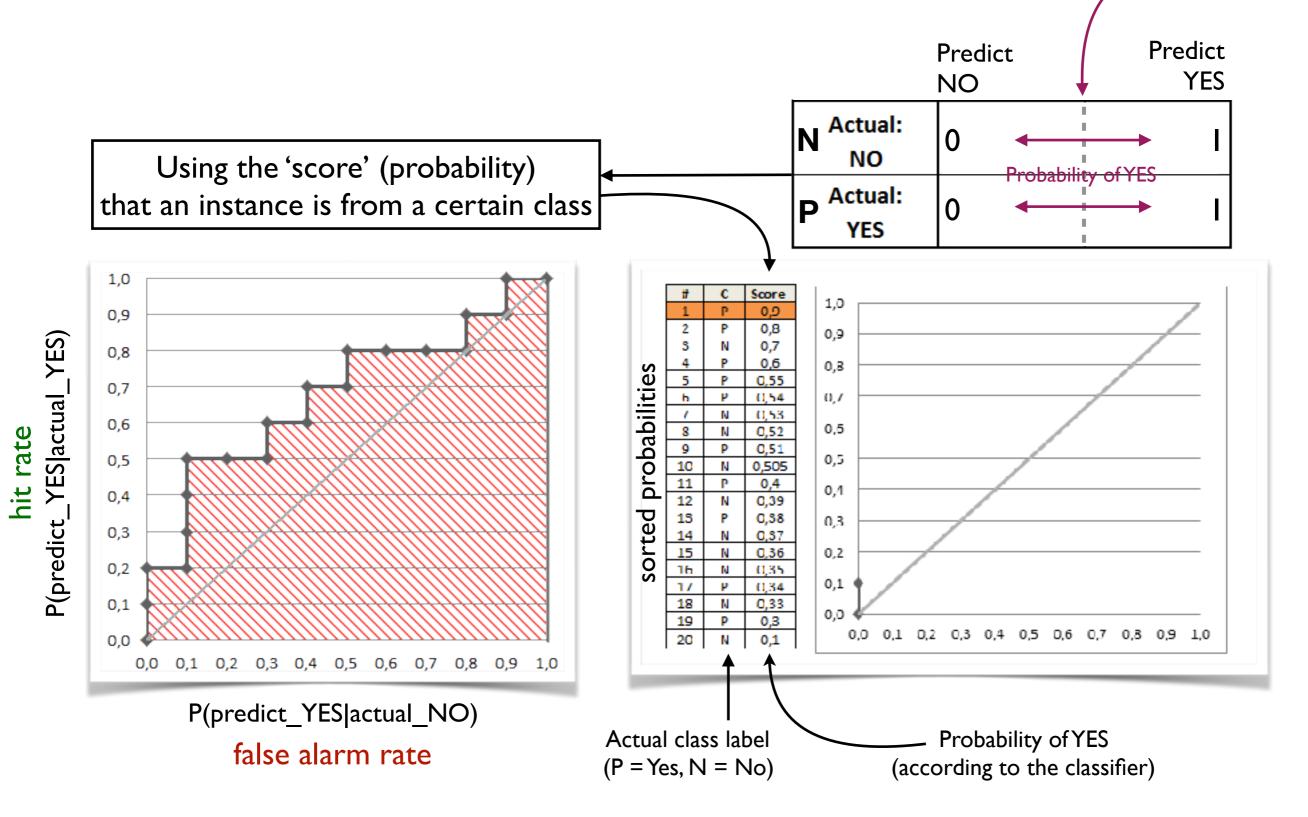
Performance measures

- Accuracy = the percention correctly classified instances across all data. Highly sensitive to bias (especially when classes are not balanced) should not be used, ever.
- **Balanced accuracy** = average percentage correct for each class, averaged across classes



false alarm rate = 100 / 105 - .95

Signal Detection Theory (SDT) measures: Area Under the Curve (AUC)



Experimental design and analytical approach

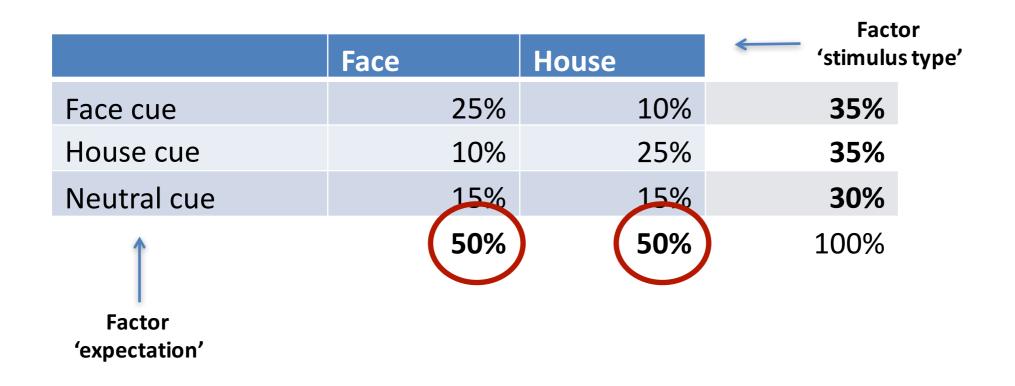
• conditions versus classes

	Face	House
Face cue	25%	10%
House cue	10%	25%
Neutral cue	15%	15%

- Experimental design: the condition labels describe the cells in your factorial design
- Analytical approach using decoding: the stimulus classes are the relevant things that you are comparing when doing a decoding analysis (often these are the levels of a factor in your design)

Within class imbalances

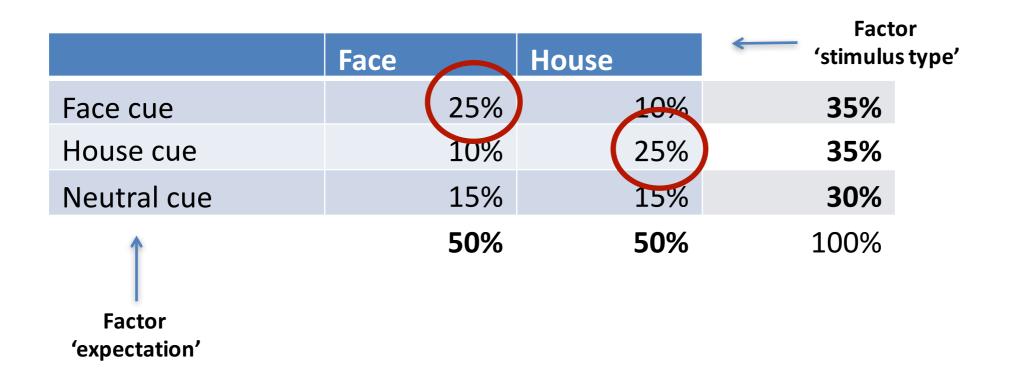
Classes: face versus house



Designs are often not balanced even when they seem to be at first glance

Within class imbalances

But the number of trials may not be balanced within stimulus classes



Correctly cued items contribute more strongly to the comparison than neutrally or incorrectly cued items

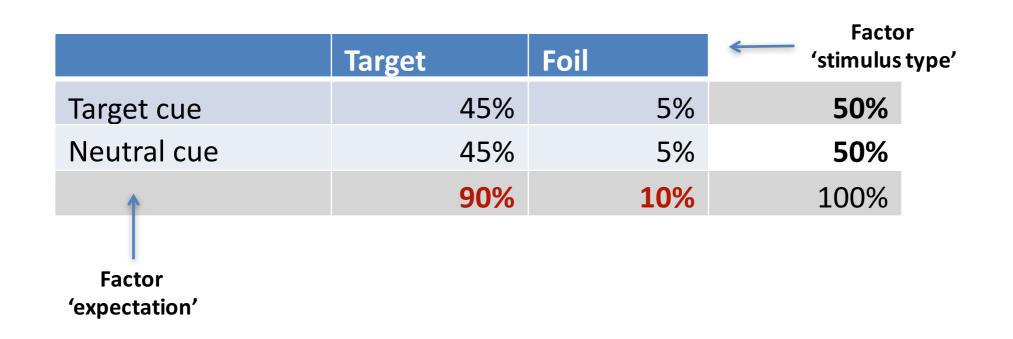
Within class imbalances

The ADAM toolbox automatically *removes trials* within the underrepresented *conditions* to keep the design balanced (this is called **undersampling**)

	Face	House	Factor 'stimulus type'
Face cue	10%	10%	20%
House cue	10%	10%	20%
Neutral cue	10%	10%	20%
Factor 'expectation'	30%	30%	60%

Between class imbalances

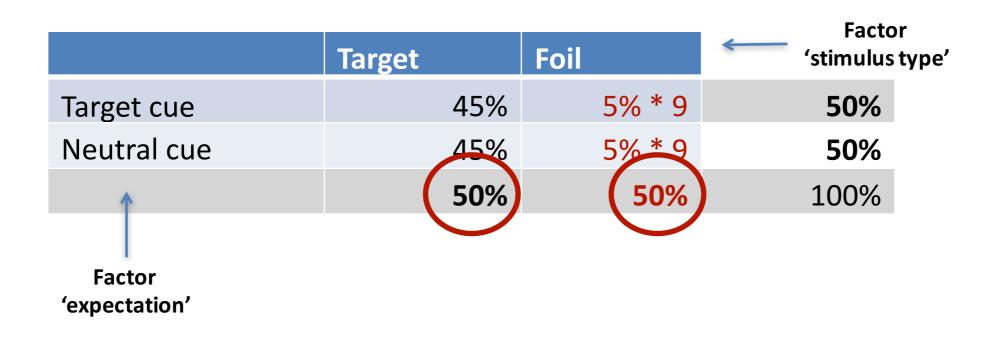
Your design may also be unbalanced **between** stimulus classes



Unbalanced accuracy = percentage correctly classified across all instances Highly sensitive to bias when classes are not balanced!

Between class imbalances

By default, ADAM balances between classes by duplicating/generating trials of the underrepresented classes in the training set (this is called **oversampling**)



Some MVPA (machine learning) lingo

- The algorithm that is used to classify multivariate data patterns into distinct categories is called **the classifier**
- The categories (conditions) that the classifier discriminates are called **classes**
- The input data points used for classification are called the **features**. In the case of MEG/EEG, the channels/electrodes are usually the features.
- If a classifier is trained and tested on the same data this results in **overfitting** (in cognitive neuroscience we call this *double-dipping*)
- To prevent this, you either need to train and test on a different dataset, or use **k-fold cross-validation**
- After training, each feature is assigned a classifier **weight**, telling the classifier how useful that feature is to discriminate the relevant classes
- The performance of a classifier can be assessed in various ways, by making use of the **confusion matrix**
- Undersampling and oversampling can be used to keep a design balanced (preventing bias in classification accuracy)

Course overview

• Day I (introductory)

- lecture I: History and electrophysiological basis of EEG
- lecture 2: Basic concepts in MVPA
- lecture 3: Decoding measures and the temporal generalization method
- lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical
- Day 2 (advanced)
 - lecture I: Using classifier scores to map brain to behavior
 - lecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
 - Afternoon: practical, analyze your own data and/or a supplied dataset from scratch

Questions

Course overview

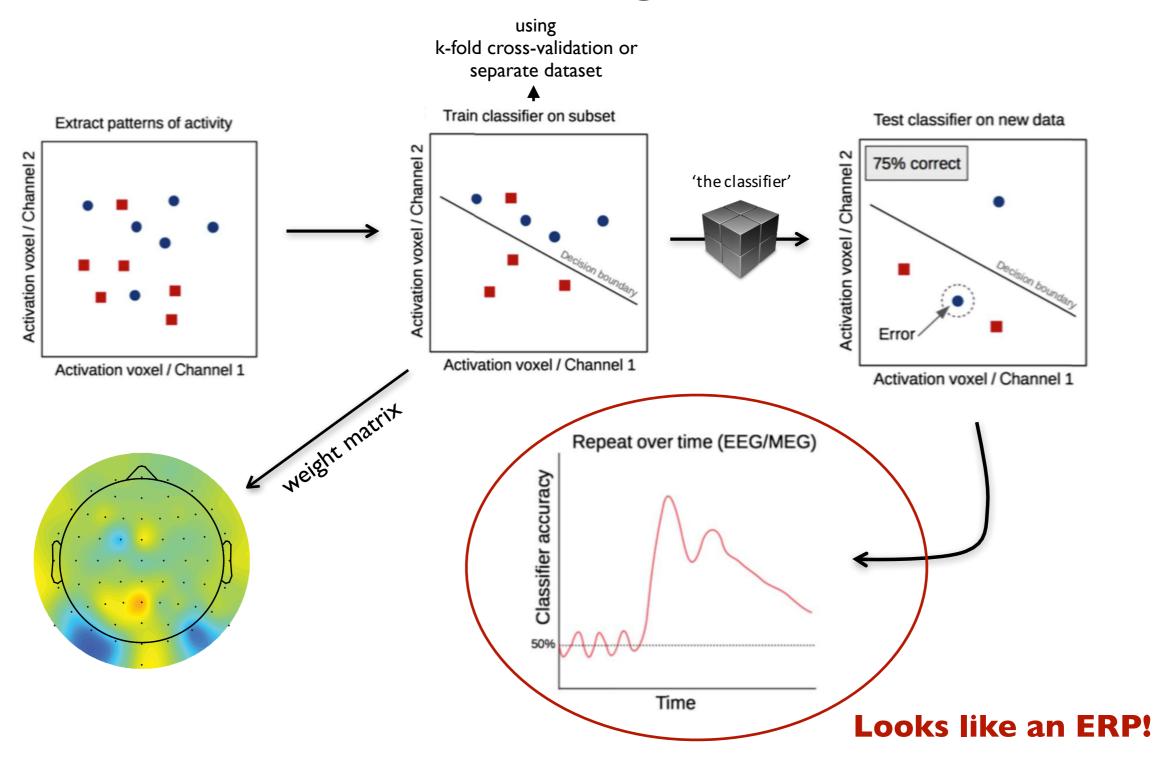
• Day I (introduction)

- Iecture I: History and electrophysiological basis of EEG
- Iecture 2: Backward decoding models in MVPA: concepts and analytical approach
- lecture 3:Advantages of MVPA, the temporal generalization method
- Iecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical
- Day 2 (advanced)
 - Iecture I: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
 - Iecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
 - Afternoon: practical, analyze your own data and/or a supplied dataset

Lecture 3

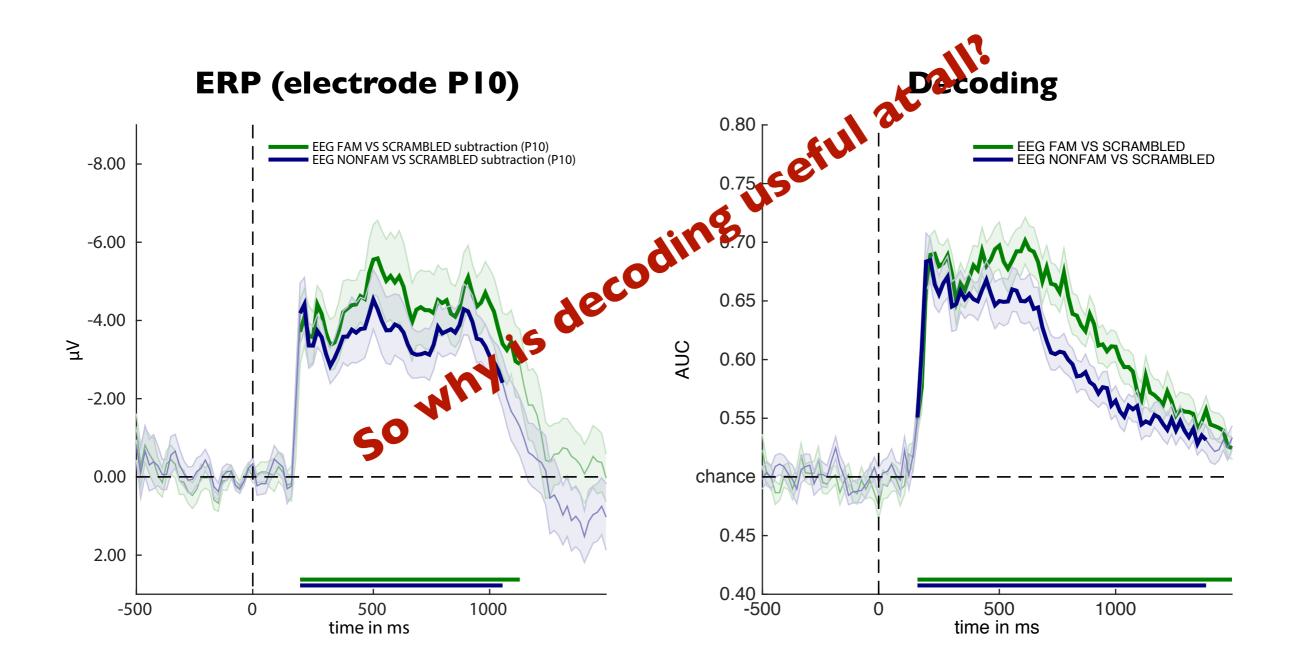
- Advantages of MVPA
- The temporal generalization method

What do EEG decoding results look like?



Grootswagers, T., Wardle, S. G., & Carlson, T.A. (2017). Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. *Journal of Cognitive Neuroscience*, 29(4), 677–697.

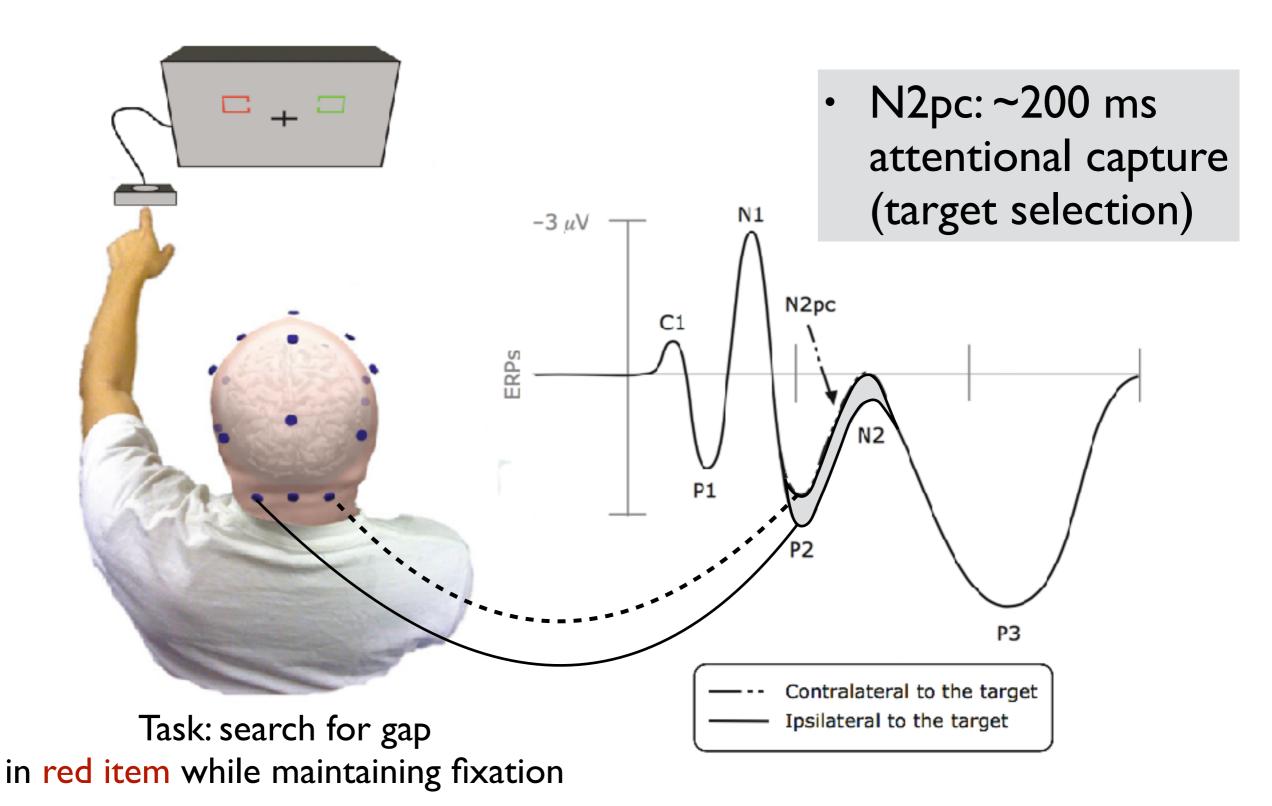
Result: a temporal signal



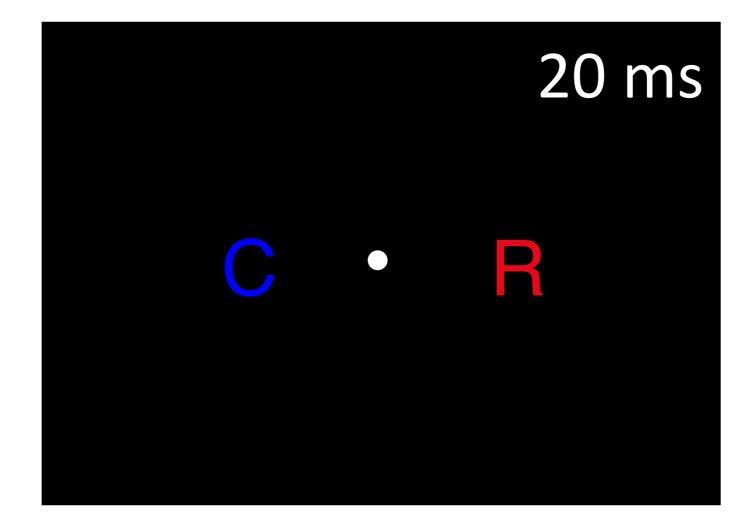
Advantages of MVPA

- Using MVPA, you do not have to specify or know beforehand which electrodes contain the experimental effect
- MVPA identifies differences that are not picked up by a regular ERP analysis, especially when the locus of the effect is unknown
- This also simplifies the multiple comparisons problem

Example I: attentional selection (N2pc)



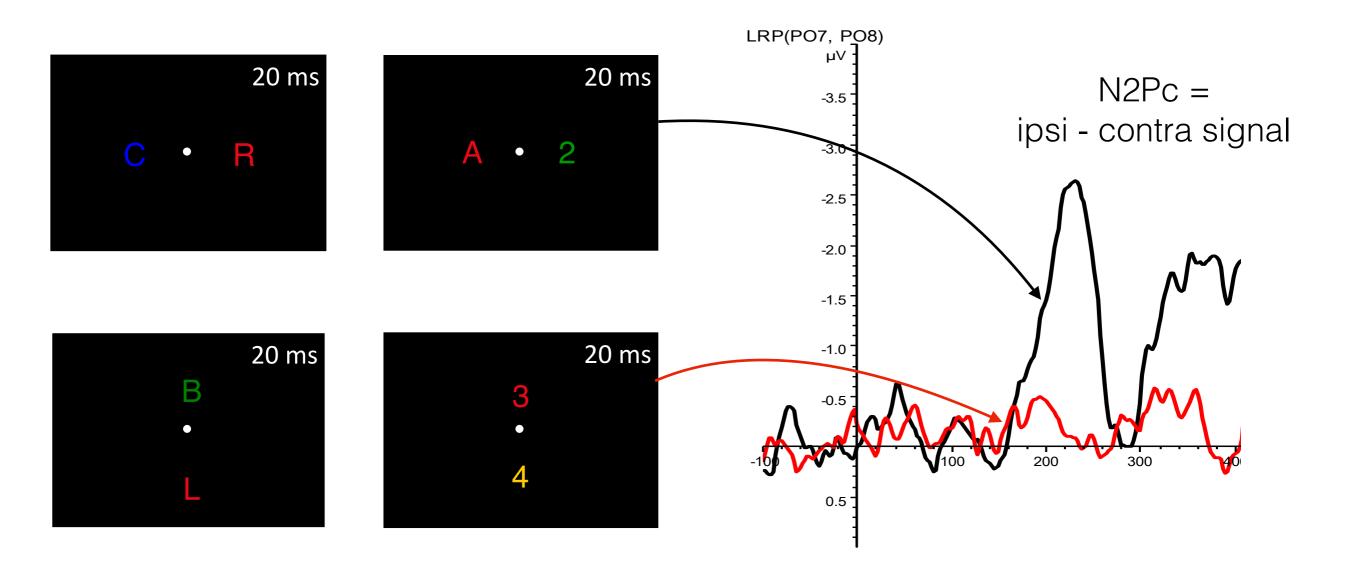
Attentional selection: N2pc



Task: identify the red item (digit or letter)

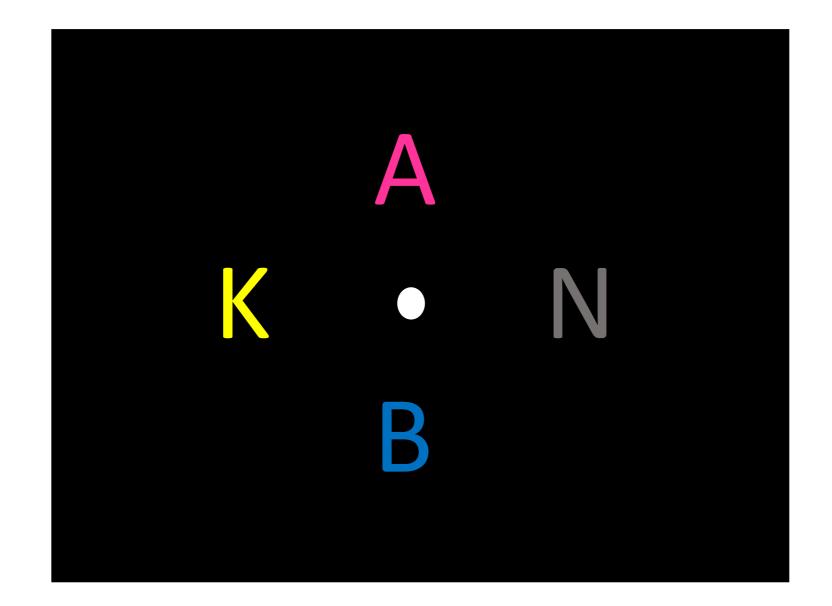
Example I: ERP of contingent capture N2Pc

Task: detect whether red item is digit or letter



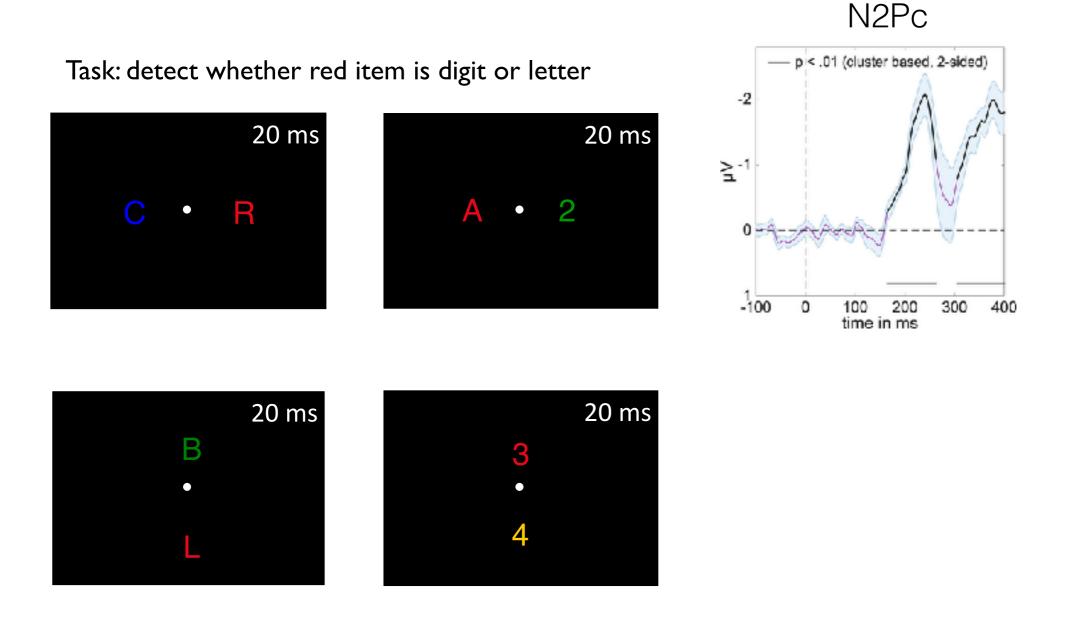
You cannot find an N2Pc for top vs bottom because the component is lateralized

How to investigate parallel selection? How to determine attention to vertical targets?



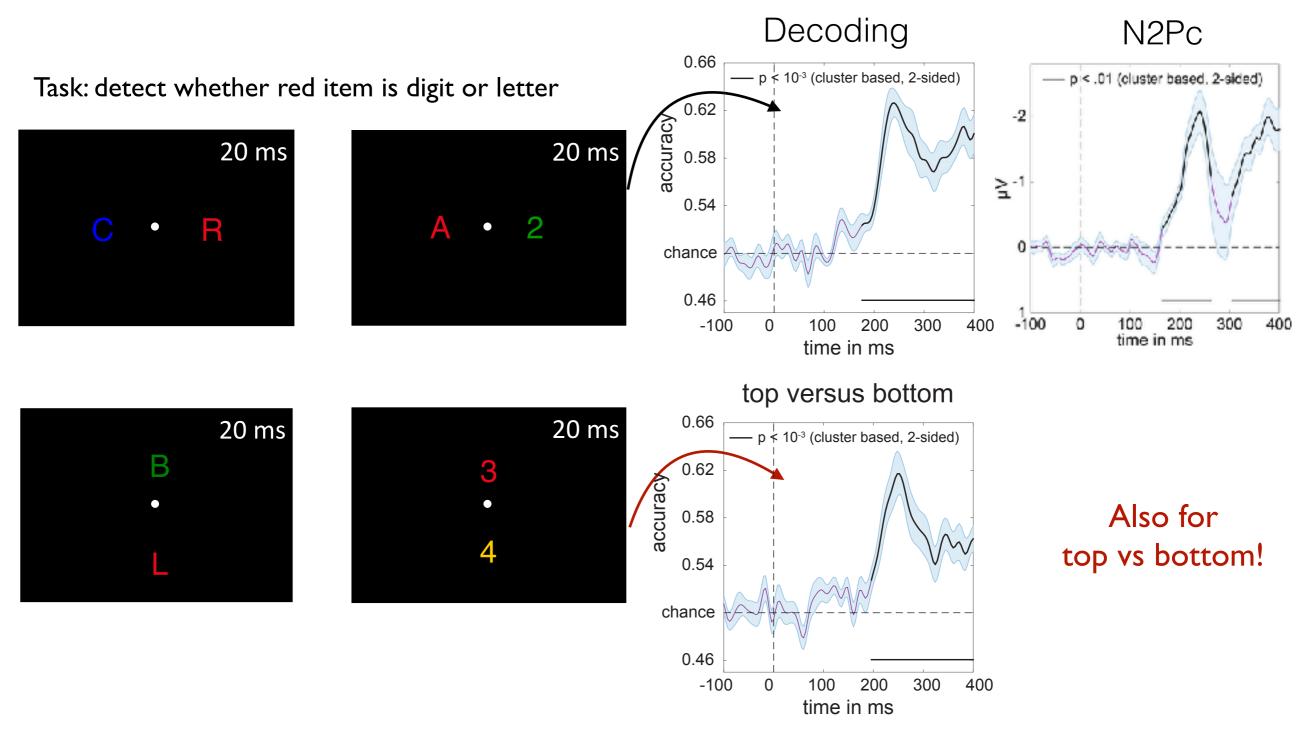
Task: identify the yellow and blue item

MVPA:classify where the target is



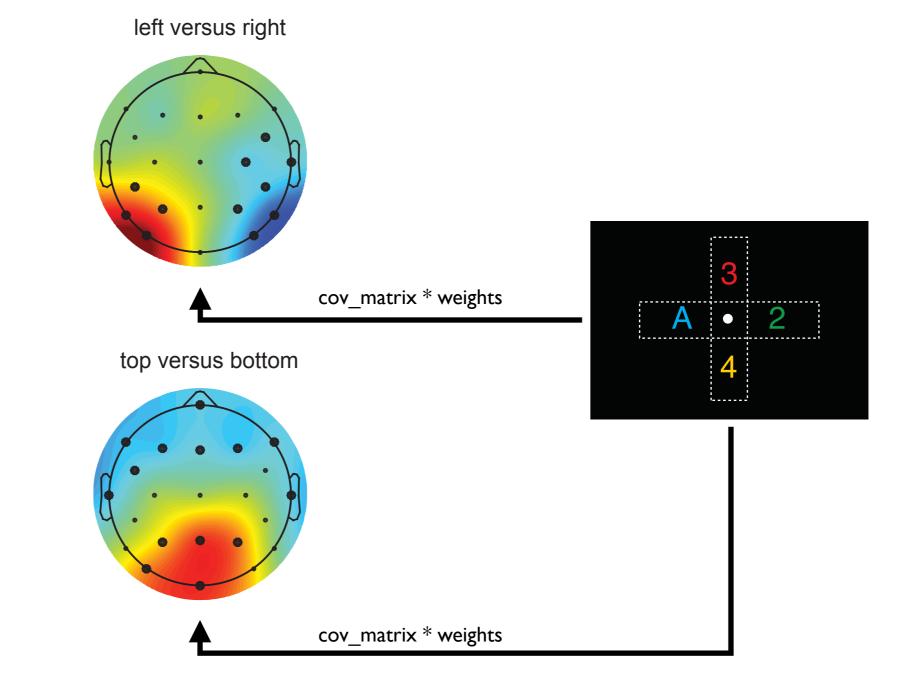
MVPA extracts **any** pattern from the data (does not have to be lateralized)

MVPA:classify where the target is



MVPA extracts **any** pattern from the data (does not have to be lateralized)

Use decoding to identify the 'vertical' N2pc

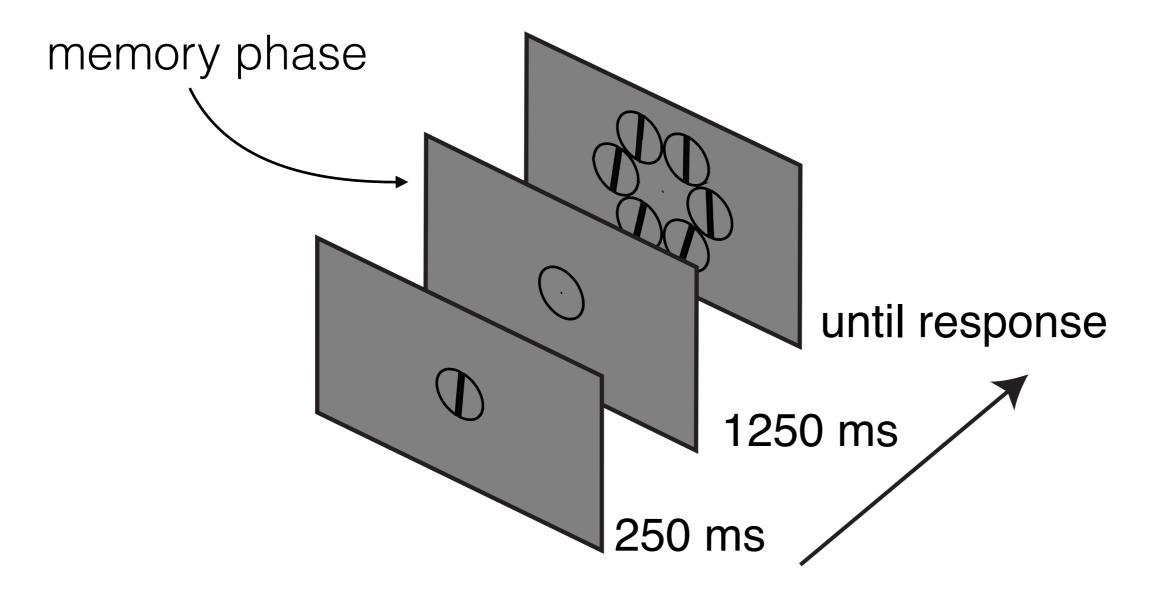


Fahrenfort, J. J., Grubert, A., Olivers, C. N. L., & Eimer, M. (2017). Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. *Scientific Reports*, 7(1), 1886.

Why else is MVPA useful?

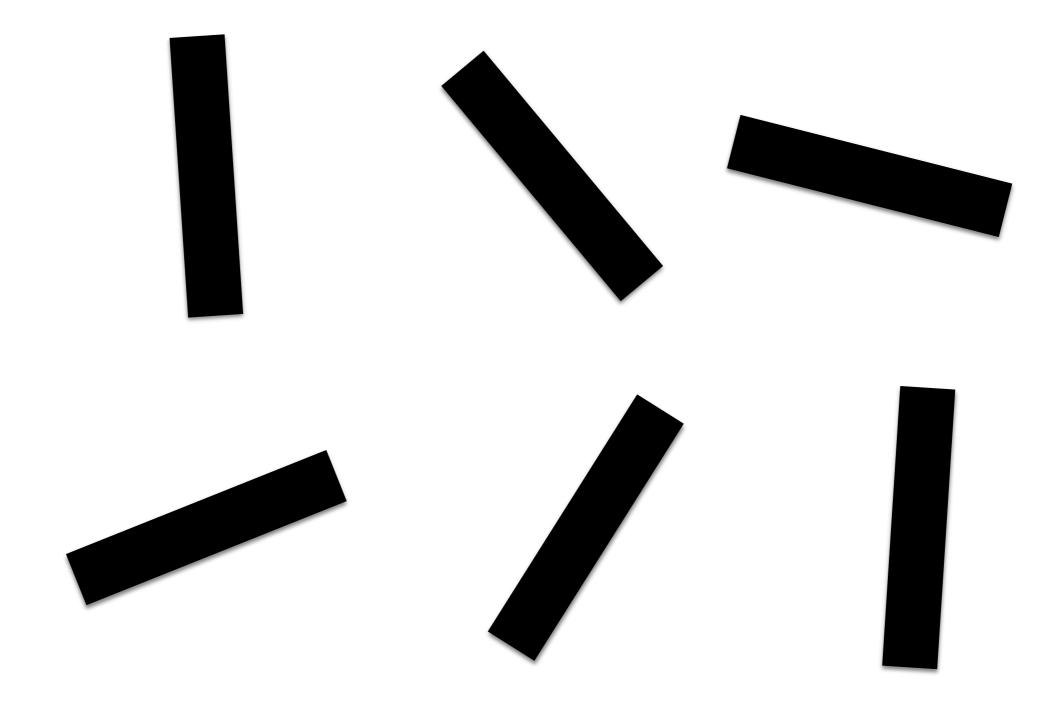
- You do not have to select electrodes
- The nice thing about EEG: it has high temporal resolution
 → look at the stability and dynamics of neural representations over time
- Train on one time point, and test on all the others to assess stability of the signal!

Example 2: Tracking memory over time

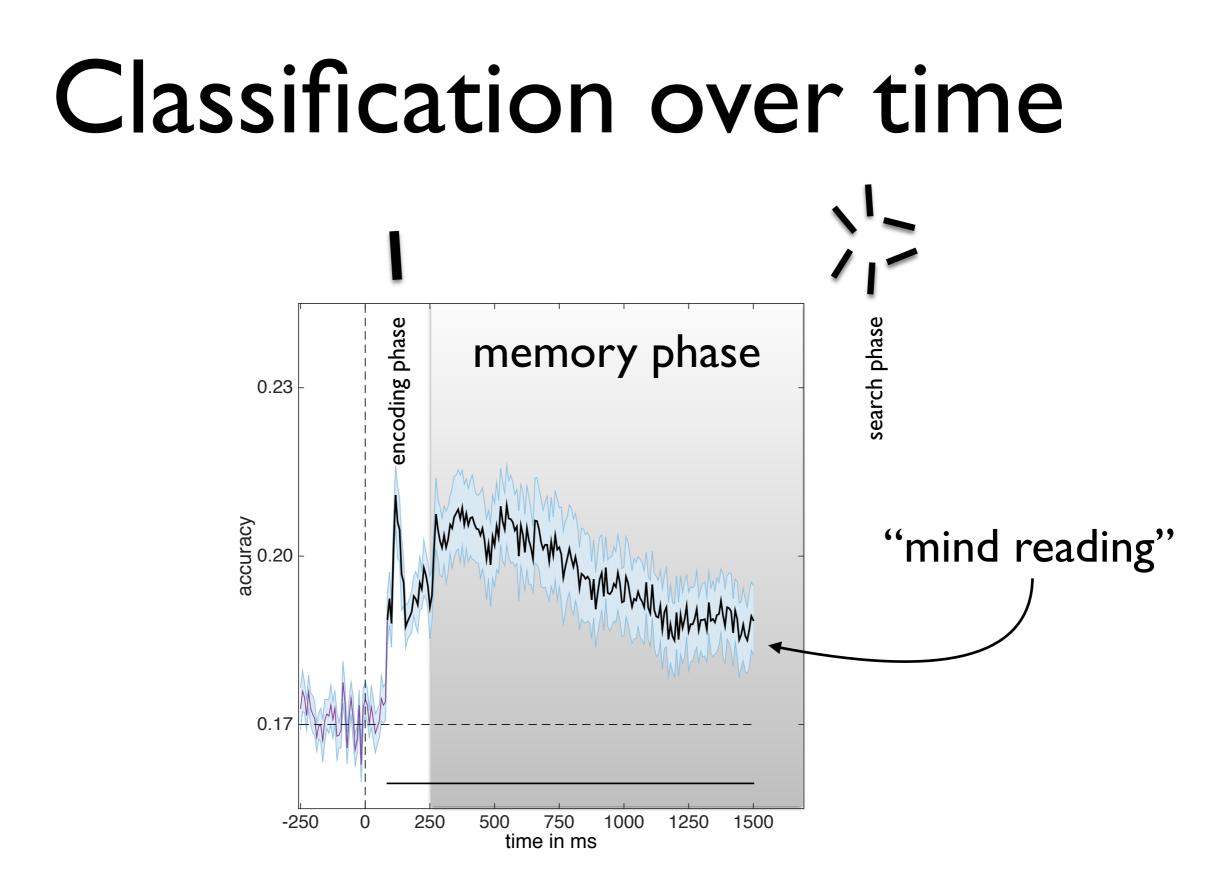


Task: remember orientation and identify by clicking on the correct item

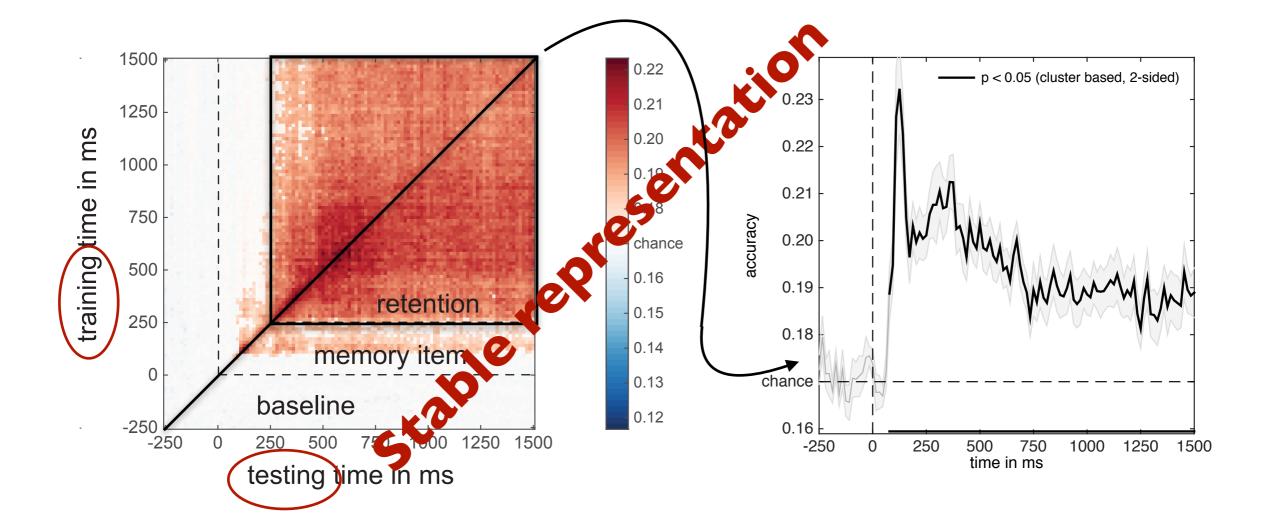
Six potential orientations to remember



chance performance of classifier: I/6th

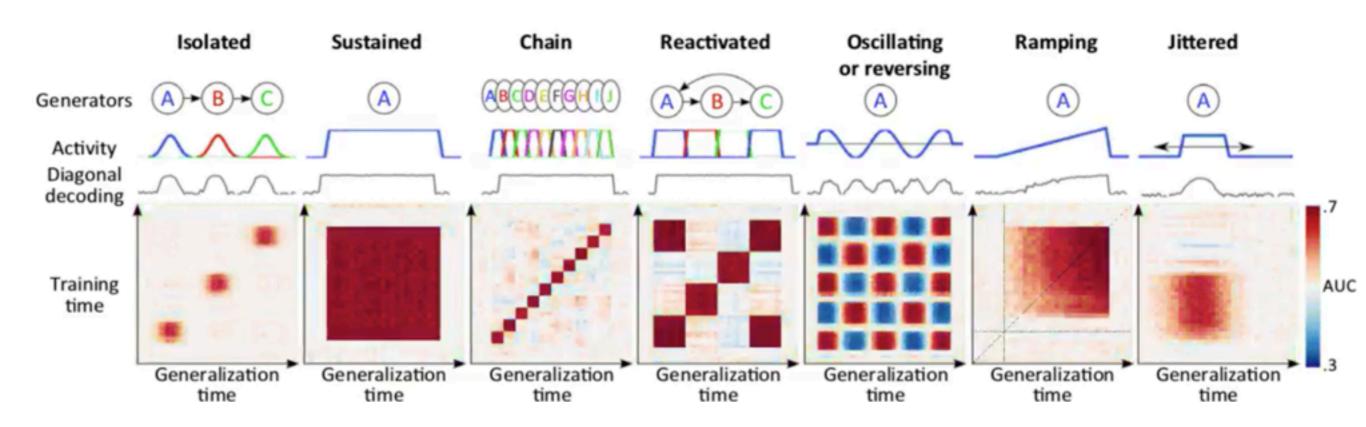


Temporal generalization matrix



King, J. R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization method. *Trends in Cognitive Sciences*, *18*(4), 203–210.

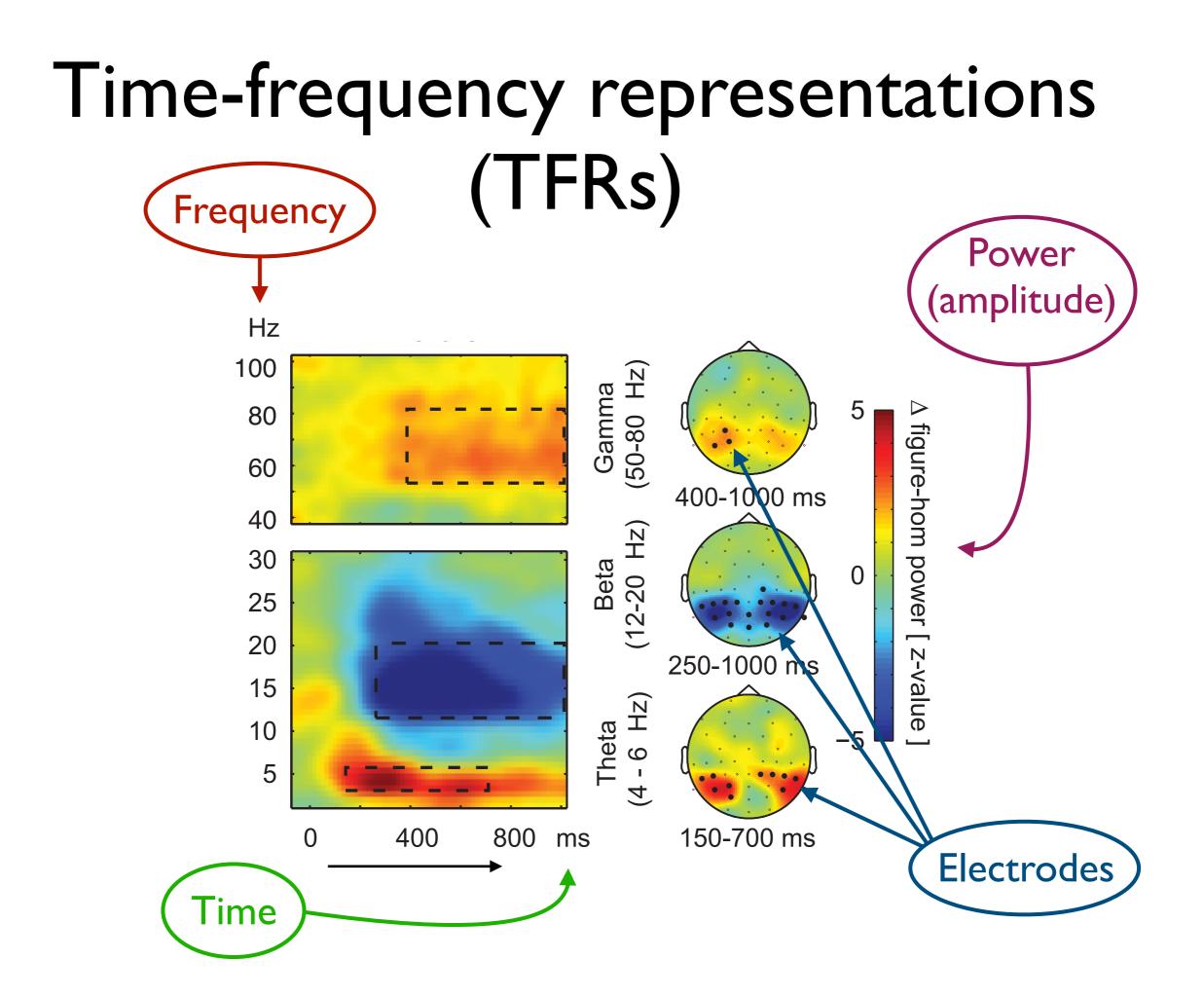
Temporal generalization: stability and dynamics over time



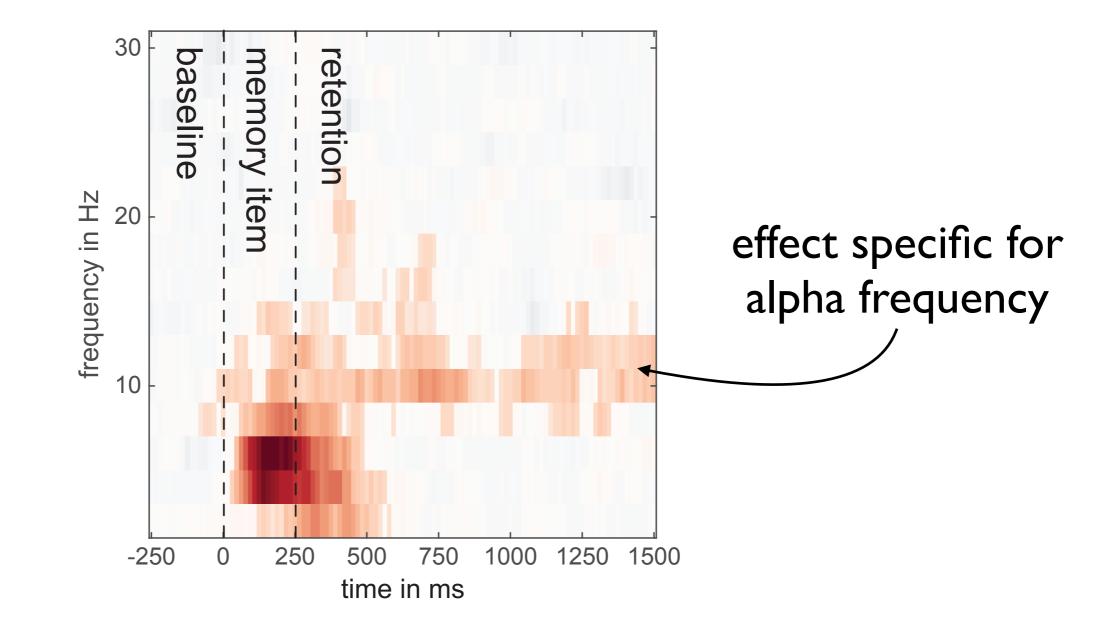
King, J. R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization method. *Trends in Cognitive Sciences*, *18*(4), 203–210.

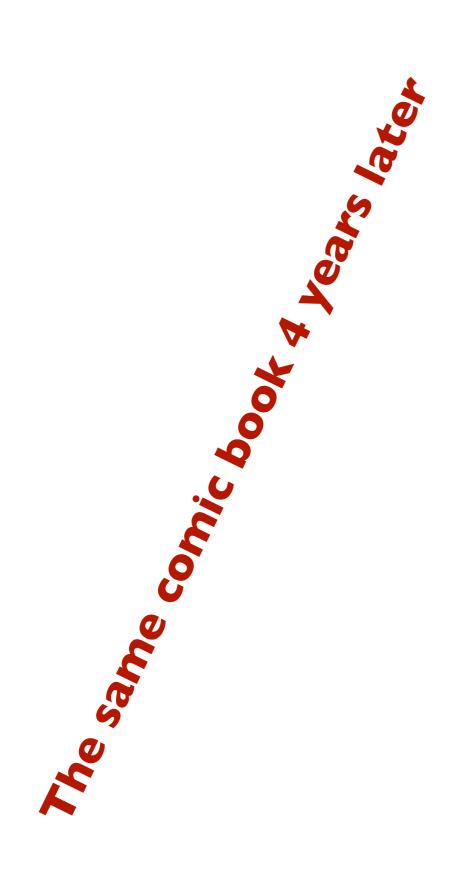
Why else is MVPA useful for MEG/EEG?

- You do not have to select electrodes
- Look at cortical stability and dynamics using temporal generalization
- Time-frequency representations (TFRs): perform MVPA on time-frequency data



Example of TFR decoding





Conclusions

- MVPA allows you to find effects without selecting electrodes
- MVPA allows you to look at temporal generalization (stability / dynamics over time)
- MVPA also allows you to look at time frequency data, again without selecting electrodes

Course overview

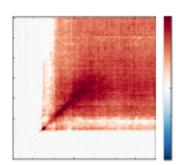
• Day I (introduction)

- Iecture I: History and electrophysiological basis of EEG
- Iecture 2: Backward decoding models in MVPA: concepts and analytical approach
- Iecture 3: Advantages of MVPA, the temporal generalization method
- lecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical
- Day 2 (advanced)
 - Iecture I: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
 - Iecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
 - Afternoon: practical, analyze your own data and/or a supplied dataset

Lecture 4 ADAM architecture and practical

- Give overview of the ADAM toolbox
- Explain experiment from the practical

the Amsterdam Decoding and Modeling toolbox (ADAM)



- I. Pre-processing (can do this using EEGLAB, do not need ADAM)
- 2. First level (single subject) analyses are computed and stored
- 3. Reading single subject results and compute group statistics
- 4. Visualize group statistics in a plot

ADAM architecture

mport and pre-		Import native EEG or ME format, pre-process, e.g. rejection. Baseline correc can also be applied by AE	highpass filter, epochin tion and muscle artefac	g, artefact ct rejection
adam_MVPA_	<i>firstlevel</i> In: Out:	Epoched files in either EE ADAM result files (one for performance metric for ev or for every train-test sam	r each subject), contain /ery train-test time sam	ning a ple (raw)
Use	RAW data	Compute time	-frequency representat	ions
encoding mo on testing da	odel (FEM) using tr ata. Weights of BD	ckward decoding model (B aining data, and compute p Ms are forward transformed on. Requires a single data t	berformance metric	Several transformations can be performed on the training and testing data, e.g binnning, whitening, computing induced power, etc. These transformations are either performed separately on training and testing data, or they are performed indiscriminately across all stimulus classes.
iteration 1	Training data	in roquioo a oingio aata r	Test fold	rmation ning, cc d separ across
iteration 2				ns can be performed omputing induced po rately on training and all stimulus classes
iteration 3) perfo induc trainir ulus cli
iteration 4				rmed c ed pov ng and asses.
iteration 5		·		on the t ver, etc testing
The final perform	mance metric is comp	outed by averaging over test fold	s (in this example, K=5).	training a tc. These ig data, or
		ata sets for training and tes arate event values for train		aining and testing data, e.g These transformations are data, or they are performed
	Training data	Testing dat	a	data, e ations au performe

adam_compute_group_MVPA adam_compute_group_ERP	ADAM result files computed by <i>adam_MVPA_firstlevel</i> ADAM stats variable(s) containing group statistics
adam_compare_MVPA_stats	ADAM stats variable(s) containing group statistics ADAM stats variable(s) containing group statistics

adam_plot_MVPA adam_plot_BDM_weights		ADAM stats variable(s) containing group statistics publication-ready graphs of performance metrics and/or topographical maps of forward transformed weights
---	--	---

I. Import

<i>Import and pre-process</i> (not part of ADAM)	Import native EEG or MEG data into EEGLAB or FieldTrip format, pre-process, e.g. highpass filter, epoching, artefact rejection. Baseline correction and muscle artefact rejection can also be applied by ADAM during first-level analysis.	
--	---	--------------------------

ADAM architecture

not part of AD	⊖-process DAM)	Import native EEG or MEC format, pre-process, e.g. h rejection. Baseline correct can also be applied by AD	highpass filter, epochir tion and muscle artefa	ng, artefact ct rejection
adam_MVPA_	<i>firstlevel</i> In: Out:	Epoched files in either EE ADAM result files (one for performance metric for eve or for every train-test sam	each subject), contair ery train-test time sam	ning a nple (raw)
Use	RAW data	Compute time-	frequency representat	tions
encoding mo on testing da	odel (FEM) using ta ata. Weights of BD	ackward decoding model (BI raining data, and compute p Ms are forward transformed	erformance metric	Several transformations can be performed on the training and testing data, e.g binnning, whitening, computing induced power, etc. These transformations are either performed separately on training and testing data, or they are performed indiscriminately across all stimulus classes.
iteration 1	Training data		Test fold	ing, cor l separa across
iteration 2				s can be pe mputing ind ately on trai all stimulus
iteration 3) perfon training ulus cla
iteration 4				rformed on luced powe ning and te classes.
iteration 5				the tra
The final perfor	mance metric is com	outed by averaging over test folds	s (in this example, <i>K=5</i>).	Ining a
		lata sets for training and tes parate event values for train		nd testing ransforma they are p
	parate files or sep			
	parate files or sep	Testing data	1	data, e.g. itions are erformed

adam_compute_group_MVPA adam_compute_group_ERP	ADAM result files computed by <i>adam_MVPA_firstlevel</i> ADAM stats variable(s) containing group statistics
adam_compare_MVPA_stats	ADAM stats variable(s) containing group statistics ADAM stats variable(s) containing group statistics

	adam_plot_MVPA adam_plot_BDM_weights	In: Out:	ADAM stats variable(s) containing group statistics publication-ready graphs of performance metrics and/or topographical maps of forward transformed weights
1			

2. First level (single subject)

adam_MVPA_	Out: A	Epoched files in either El ADAM result files (one fo performance metric for e or for every train-test sar	or each subject), conta very train-test time sar	ining a mple (raw)	read from disk written to disk
Use	e RAW data	Compute time	e-frequency representa	ations	
encoding mo	odel (FEM) using train	ward decoding model (E ning data, and compute are forward transforme	performance metric	Several transformations can be performed on the training binnning, whitening, computing induced power, etc. Thes either performed separately on training and testing data, indiscriminately across all stimulus classes.	
Option 1: K-	-fold cross-validation.	Requires a single data	file per subject.	nsforma nitening rmed so tely ac	
iteration 1	Training data		Test fold	mations ling, com d separat across a	
iteration 2				s can be per mputing ind ately on trai all stimulus	
iteration 3				e perfo j induc trainir ulus cl	
iteration 4				performed on the induced power, et training and testin lus classes.	
iteration 5				on the tr ver, etc. testing	
The final perfor	mance metric is compute	ed by averaging over test fold	ds (in this example, <i>K</i> =5).		
		a sets for training and te ate event values for trair		and te transt r they	
	Training data	Testing da	ta	sting data, e.g formations are are performed	
I he performan	ce metric is computed ov	/er the testing data.			

ADAM architecture

(not part of AD	e-process DAM)	Import native EEG or MEG format, pre-process, e.g. hi rejection. Baseline correction can also be applied by ADA	ghpass filter, epochin on and muscle artefa	ng, artefact ct rejection
adam_MVPA_	<i>firstlevel</i> In: Out:	Epoched files in either EEG ADAM result files (one for e performance metric for eve or for every train-test samp	each subject), contair ry train-test time sam	ning a iple (raw)
Use	e RAW data	Compute time-fr	requency representat	tions
encoding mo on testing da	odel (FEM) using tr ata. Weights of BDI	ckward decoding model (BD aining data, and compute pe Ms are forward transformed.	erformance metric	Several transformations binnning, whitening, con either performed separa indiscriminately across <i>e</i>
iteration 1	Training data		Test fold	mation ling, cc d separ across
iteration 2				s can be performed mputing induced po ately on training and all stimulus classes
				j indu trair
iteration 3				l Caning for
iteration 3 iteration 4				formed or uced pow ning and t classes.
				performed on the training and testing used to the training and testing lus classes.
iteration 4 iteration 5	mance metric is comp	outed by averaging over test folds ((in this example, K=5).	formed on the training a uced power, etc. These ning and testing data, or classes.
iteration 4 iteration 5 The final perfor Option 2: Re	equires separate d	outed by averaging over test folds (ata sets for training and testi arate event values for train a	ng (either using	formed on the training and testing uced power, etc. These transform: ning and testing data, or they are p classes.
iteration 4 iteration 5 The final perfor Option 2: Re	equires separate d	ata sets for training and testi	ng (either using	on the wer, et d testin

adam_compute_group_MVPA adam_compute_group_ERP	In: Out:	ADAM result files computed by <i>adam_MVPA_firstlevel</i> ADAM stats variable(s) containing group statistics
adam_compare_MVPA_stats	In: Out:	ADAM stats variable(s) containing group statistics ADAM stats variable(s) containing group statistics

adam_plot_MVPA adam_plot_BDM_weights	In: Out:	ADAM stats variable(s) containing group statistics publication-ready graphs of performance metrics and/or topographical maps of forward transformed weights

Group statistics Plotting

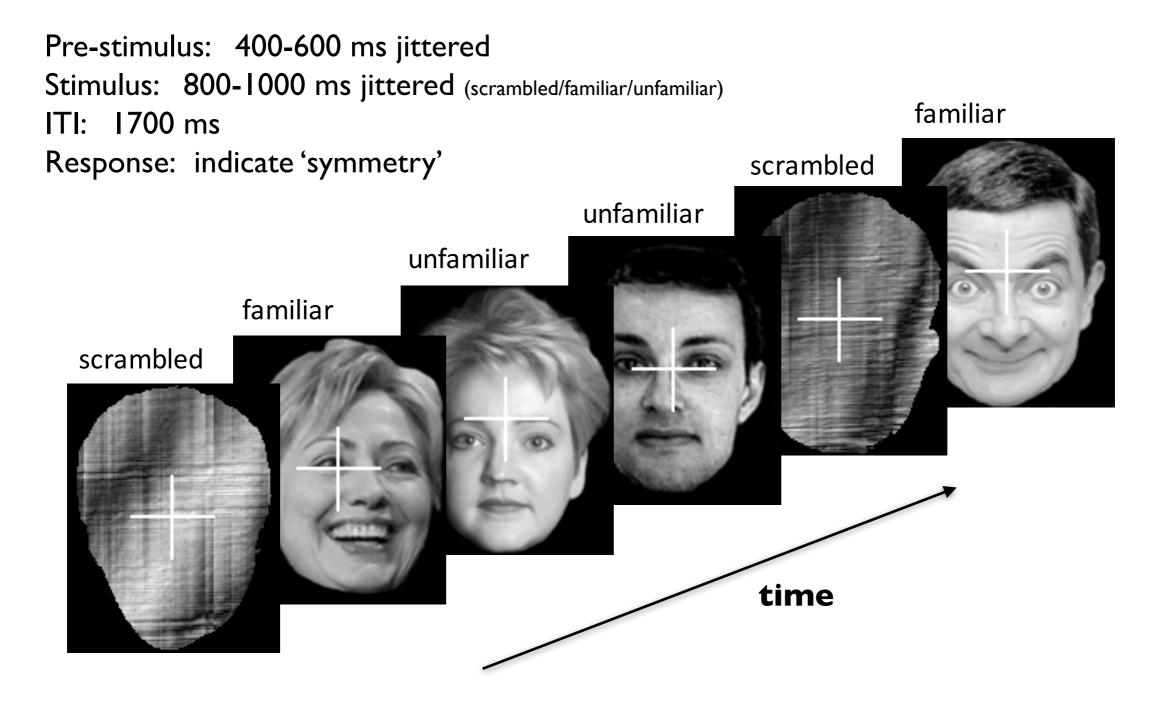
read from disk

adam_compute_group_MVPA	In:	ADAM result files computed by <i>adam_MVPA_firstlevel</i>
adam_compute_group_ERP	Out:	ADAM stats variable(s) containing group statistics
adam_compare_MVPA_stats	ln: Out:	ADAM stats variable(s) containing group statistics ADAM stats variable(s) containing group statistics
adam_plot_MVPA	In:	ADAM stats variable(s) containing group statistics
adam_plot_BDM_weights	Out:	publication-ready graphs of performance metrics and/or

topographical maps of forward transformed weights

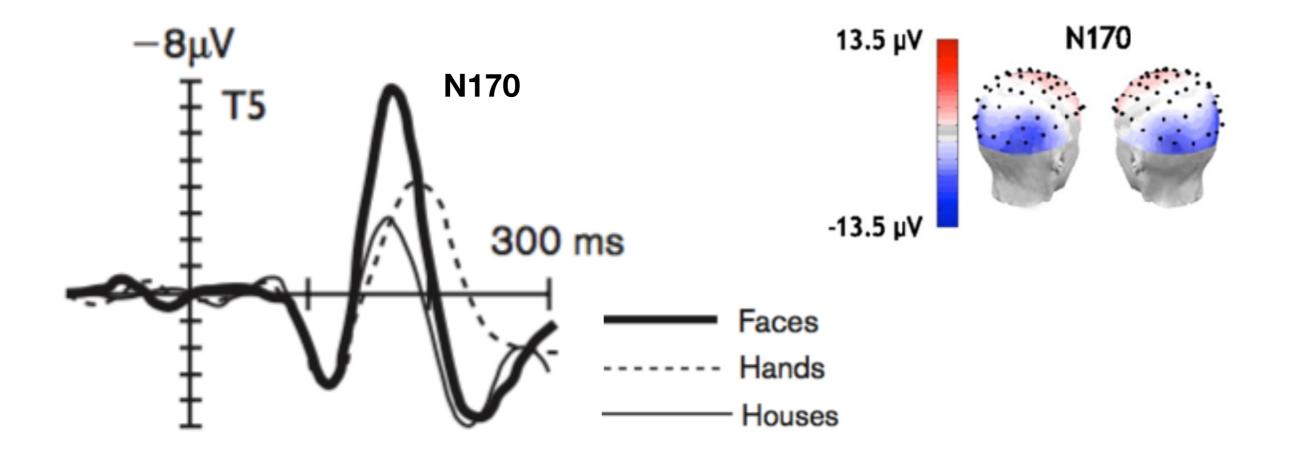
The experiment

Open dataset, containing simultaneously recorded EEG/MEG



Wakeman, D. G., & Henson, R. N. OpenfMRI ds000117 (2014). <u>https://openfmri.org/dataset/ds000117/</u> Wakeman, D. G., & Henson, R. N. (2015). A multi-subject, multi-modal human neuroimaging dataset. *Scientific Data*, 2.

Face-selective N170 component in EEG



Eimer, M. (2000). The face-specific N170 component reflects late stages in the structural encoding of faces. *Neuroreport*, 11(10), 2319–2324.

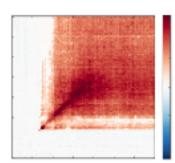
Table of experimental design

Numbers in the table denote event codes

	Famous	Nonfamous	Scrambled	Factor
First presentation	5	13	17	
Immediate repeat	6	14	18	
Delayed repeat	7	15	19	
^				

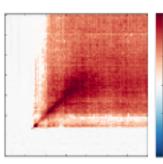
FactorThis factor 'stimulus repetition' exists in the experiment, but we do not'stimulus repetition'analyze it, we only look at the first presentations

ADAM analysis pipeline



- I. Pre-processing (can do this using EEGLAB, do not need ADAM)
- 2. First level (single subject) analyses are computed and stored
- 3. Compute group statistics after reading in single subject results
- 4. Visualize group statistics in a plot

Practical, use the ADAM toolbox



- **Part I:** Group analysis of raw EEG/MEG:
 - Comparing ERPs to MVPA
- **Part II:** Group analysis:
- unconventional order (Temporal generalization time-by-time matrix
- **Part III:** First-level (single subject) analysis of raw data
- Part IV: Group analysis
 - Time-frequency (TFR), time-by-frequency / temporal generalization
- Part V: First-level (single subject) analysis of TFR data + play around with the scripts/data

Questions?

Course overview

• Day I (introduction)

- Iecture I: History and electrophysiological basis of EEG
- Iecture 2: Backward decoding models in MVPA: concepts and analytical approach
- Iecture 3:Advantages of MVPA, the temporal generalization method
- Iecture 4: Architecture of the ADAM toolbox and explaining the experiment of the practical
- Afternoon: practical
- Day 2 (advanced)
 - Iecture I: Multiple comparisons, MVPA experimental design, mapping brain to brain/behavior
 - Iecture 2: Forward encoding models in MVPA: how do they work, concepts and analytical approach
 - Afternoon: practical, analyze your own data and/or a supplied dataset